The wavelength for C1 note is 10.40 m, for A6 note is 0.193 m and for B7 note 0.086 m.
Answer:
Explanation:
Since, wavelength, frequency and speed of sound waves are related to each other, we can determine a single parameter with the help of other two parameters. So in this case, the frequency of different notes are given along with their common speed. So as the frequency is inversely proportional to the wavelength then in this case, the wavelength of the notes will be maximum for C1 and minimum for 3951.1 Hz.
Wavelength = Speed / Frequency
Wavelength for C1 note = 340 / 32.7 =10.40 m
Similarly, the wavelength for A6 note = 340/1760=0.193 m
And, the wavelength for B7 note = 340/3951.1 = 0.086 m
So, the wavelength for C1 note is 10.40 m, for A6 note is 0.193 m and for B7 note 0.086 m.
Answer:
a) Vf = 27.13 m/s
b) It would have been the same
Explanation:
On the y-axis:


Solving for t:
t1 = 0.67s t2= -2.4s
Discarding the negative value and using the positive one to calculate the velocity:


So, the module of the velocity will be:


If you throw it above horizontal, it would go up first, and when it reached the initial height, the velocity would be the same at the throwing instant. And starting then, the movement will be the same.
Answer:
The tension in the left side string = 17.21 N
The tension in the right side string = F = 27.3 N
Explanation:
Given that
F= 27.3 N
M= 1.43 kg ,r= 0.0792 m
Moment of inertia of disk ,I = 0.5 m r²
I = 0.5 x 1.43 x 0.0792² = 0.0044 kg.m²
m= 0.7 kg
Lets take linear acceleration of system is a m/s²
Lets take tension in left side string = T
From Newtons law
T- mg = ma
T- 0.7 x 10 = 0.7 a ----------1
(F - T) r = I α
α = Angular acceleration of disk
a = α r
(F - T) r = I α
(F - T) r² = I a
( 27.3 - T) x 0.0792² = 0.0044 a --------2
Form equation 1 and 2
a= 1.42 T - 10 m/s²
a = 1.42 ( 27.3 - T) m/s²
1.42 T - 10 = 38.9 - 1.42 T
T=17.21 N
The tension in the right side string = F = 27.3 N