Answer:
v = 12.12 m/s
Explanation:
Given that,
The mass of the cart, m = 75 kg
The roller coaster begins 15 m above the ground.
We need to find the velocity of the cart halfway to the ground. Let the velocity be v. Using the conservation of energy at this position, h = 15/2 = 7.5 m

So, the velocity of the cart is 12.12 m/s.
Newtons First Law of Motion:
An object at rest stays at rest and an object in motion<span> stays in </span>motion <span>with the same speed and in the same direction unless acted upon by an unbalanced force.</span>
Therefore, the relationship between force and motion is that it takes force to change the speed or direction of any object in motion.
Answer:
methyl orange, methyl red,phenoptalin, merhy red
Explanation:
all this following are indicators use to check the end point of a reaction
ANSWER

EXPLANATION
Parameters given:
Mass of the student, M = 70 kg
Mass of the textbook, m = 1 kg
Distance, r = 1 m
To find the gravitational force acting between the student and the textbook, apply the formula for gravitational force:

where G = gravitational constant
Therefore, the gravitational force acting between the student and the textbook is:

That is the answer.
Answer:
Vx= 11.0865(m/s)
Vy= 6.4008(m/s)
Explanation:
Taking into account that 1m is equal to 0.3048 ft, the takeoff speed in m / s will be:
V= 42(ft/s) × 0.3048(m/ft) = 12.8016(m/s)
The take-off angle is equal to 30 °, taking into account the Pythagorean theorem the velocity on the X axis will be:
Vx= 12.8016 (m/s) × cos(30°)= 11.0865(m/s)
And for the same theorem the speed on the Y axis will be:
Vy= 12.8016 (m/s) × sen(30°)= 6.4008(m/s)