1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
saw5 [17]
2 years ago
8

Which of the following graphs represents a function?

Mathematics
2 answers:
Reika [66]2 years ago
7 0

Answer:

A does, that is the only one that makes sense :)

Step-by-step explanation:

vladimir1956 [14]2 years ago
3 0

Answer:

first option

Step-by-step explanation:

if x has 2 values of y in a graph then that graph is no function

You might be interested in
The line goes through the ordered pair (10, 6) It has a y-intercept of -2.
VLD [36.1K]

Answer: the x-intercept would be (2,-2)

Step-by-step explanation:

6 0
3 years ago
A box contains 5 red balls, 6 white balls and 9 black balls. Two balls are drawn at
valina [46]

Answer:

P(Same)=\frac{61}{190}

Step-by-step explanation:

Given

Red = 5

White = 6

Black = 9

Required

The probability of selecting 2 same colors when the first is not replaced

The total number of ball is:

Total = 5 + 6 + 9

Total = 20

This is calculated as:

P(Same)=P(Red\ and\ Red) + P(White\ and\ White) + P(Black\ and\ Black)

So, we have:

P(Same)=\frac{n(Red)}{Total} * \frac{n(Red) - 1}{Total - 1} + \frac{n(White)}{Total} * \frac{n(White) - 1}{Total - 1}  + \frac{n(Black)}{Total} * \frac{n(Black) - 1}{Total - 1}

<em>Note that: 1 is subtracted because it is a probability without replacement</em>

P(Same)=\frac{5}{20} * \frac{5 - 1}{20- 1} + \frac{6}{20} * \frac{6 - 1}{20- 1}  + \frac{9}{20} * \frac{9- 1}{20- 1}

P(Same)=\frac{5}{20} * \frac{4}{19} + \frac{6}{20} * \frac{5}{19}  + \frac{9}{20} * \frac{8}{19}

P(Same)=\frac{20}{380} + \frac{30}{380}  + \frac{72}{380}

P(Same)=\frac{20+30+72}{380}

P(Same)=\frac{122}{380}

P(Same)=\frac{61}{190}

4 0
3 years ago
Seventy-two percent of the light aircraft that disappear while in flight in a certain country are subsequently discovered. Of th
Anton [14]

Answer:

a) 0.105 = 10.5% probability that it will not be discovered if it has an emergency locator.

b) 0.522 = 52.2% probability that it will be discovered if it does not have an emergency locator.

c) 0.064 = 6.4% probability that 7 of them are discovered.

Step-by-step explanation:

For itens a and b, we use conditional probability.

For item c, we use the binomial distribution along with the conditional probability.

Conditional Probability

We use the conditional probability formula to solve this question. It is

P(B|A) = \frac{P(A \cap B)}{P(A)}

In which

P(B|A) is the probability of event B happening, given that A happened.

P(A \cap B) is the probability of both A and B happening.

P(A) is the probability of A happening.

Binomial probability distribution

The binomial probability is the probability of exactly x successes on n repeated trials, and X can only have two outcomes.

P(X = x) = C_{n,x}.p^{x}.(1-p)^{n-x}

In which C_{n,x} is the number of different combinations of x objects from a set of n elements, given by the following formula.

C_{n,x} = \frac{n!}{x!(n-x)!}

And p is the probability of X happening.

a) If it has an emergency locator, what is the probability that it will not be discovered?

Event A: Has an emergency locator

Event B: Not located.

Probability of having an emergency locator:

66% of 72%(Are discovered).

20% of 100 - 72 = 28%(not discovered). So

P(A) = 0.66*0.72 + 0.2*0.28 = 0.5312

Probability of having an emergency locator and not being discovered:

20% of 28%. So

P(A cap B) = 0.2*0.28 = 0.056

Probability:

P(B|A) = \frac{P(A \cap B)}{P(A)} = \frac{0.056}{0.5312} = 0.105

0.105 = 10.5% probability that it will not be discovered if it has an emergency locator.

b) If it does not have an emergency locator, what is the probability that it will be discovered?

Probability of not having an emergency locator:

0.5312 of having. So

P(A) = 1 - 0.5312 = 0.4688

Probability of not having an emergency locator and being discovered:

34% of 72%. So

P(A \cap B) = 0.34*0.72 = 0.2448

Probability:

P(B|A) = \frac{P(A \cap B)}{P(A)} = \frac{0.2448}{0.4688} = 0.522

0.522 = 52.2% probability that it will be discovered if it does not have an emergency locator.

c) If we consider 10 light aircraft that disappeared in flight with an emergency recorder, what is the probability that 7 of them are discovered?

p is the probability of being discovered with the emergency recorder:

0.5312 probability of having the emergency recorder.

Probability of having the emergency recorder and being located:

66% of 72%. So

P(A \cap B) = 0.66*0.72 = 0.4752

Probability of being discovered, given that it has the emergency recorder:

p = P(B|A) = \frac{P(A \cap B)}{P(A)} = \frac{0.4752}{0.5312} = 0.8946

This question asks for P(X = 7) when n = 10. So

P(X = x) = C_{n,x}.p^{x}.(1-p)^{n-x}

P(X = 7) = C_{10,7}.(0.8946)^{7}.(0.1054)^{3} = 0.064

0.064 = 6.4% probability that 7 of them are discovered.

8 0
3 years ago
What is 25/7 in simplest form
Triss [41]
7 is a prime number, which means it can't be simplified. This fraction is already in simplest form, also because 25 and 7 don't have any common factors.
7 0
3 years ago
Read 2 more answers
Which expression gives the same value as 3 + 5(x + 2) − 4 when you substitute x = 3 and x = 4?
slamgirl [31]
Your answer is C.
Hope this helps.
8 0
3 years ago
Read 2 more answers
Other questions:
  • One more question...
    9·1 answer
  • NEED HELP ASAP THE QUESTION IS IN THE PICTURE!!!
    7·1 answer
  • What is the answer to c-(5c-3)
    14·1 answer
  • Stackable polystyrene cups have a height h1=12.5 cm. Two stacked cups have a height of h2=14 cm. Three stacked cups have a heigh
    8·2 answers
  • Solve it please need help
    8·1 answer
  • Determine whether 90.5m .92m is equivalent to each of the following expressions.
    8·1 answer
  • Photo above. Please help I'm confused
    7·2 answers
  • PLEASE HELPP!! DID I DO IT RIGHT???
    7·1 answer
  • Simplify 2 1/2 times 3/4
    11·1 answer
  • 1) If there are 12 eggs in a dozen, which expression represents how many eggs are in x dozens? 12x O x= 12 O x-12 O 12.x 12 + x
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!