Answer:
The experimental plan is to measure the values of the dependent variable, which is the temperature of the pizza after it is cooled in each of the heat (temperature) environments, which is the dependent variable, for a given equal period of time, which is the control
Explanation:
The given parameters are;
The temperature of the pizza = 400°F
The temperature of the freezer = 0°F
The temperature of the refrigerator = 40°F
The temperature of the countertop = 78°F
Given that the independent variable = The heat to which the hot pizza is subjected
The dependent variable = The temperature to which the pizza cools down
The experiment plan includes;
1) Place the pizza which is at 400°F in each of the different heat environment, which are, the freezer, the fridge, and the counter top, for the same period of time and record the final temperature of the pizza
2) The option that gives the lowest final temperature within the same time frame is the option that will let the pizza cool down fastest.
The three mass value measure are precise mass
<u>explanation</u>
precise mass is term use to describe data from experiment that have been repeated several times. An experiment that yield tightly grouped set of data it has a high precision. 8.93 , 8.94 and 8.92 are precise mass since they have repeated severally
First off chlorine is not a metal so you can ignore that one.
Sodium and Rubidium are in group 1 of the periodic table and Magnesium is in group 2.
Group one metals are more reactive than group two because it is harder for the group two metals to lose their 2 valence (outer most) electrons.
As you go down group 1 there is an increase in the reactivity this is because as you go down there is an increase in the atomic radius which leads to more shielding. This weakens the electrostatic forces of attraction making it easier to lose the outermost electrons, therefore they are more reactive.