<span>A solution with a pH of 4 has ten times the concentration of H</span>⁺<span> present compared to a solution with a pH of 5.
</span>pH <span>is a numeric scale for the acidity or basicity of an aqueous solution. It is the negative of the base 10 logarithm of the molar concentration of hydrogen ions.
</span>[H⁺] = 10∧-pH.
pH = 4 → [H⁺]₁ = 10⁻⁴ M = 0,0001 M.
pH = 5 → [H⁺]₂ = 10⁻⁵ M = 0,00001 M.
[H⁺]₁ / [H⁺]₂ = 0,0001 M / 0,00001 M.
[H⁺]₁ / [H⁺]₂ = 10.
The density is calculated as mass per volume, so if we want to solve for mass, we would multiply density by volume.
For Part A: if we have a density of 0.69 g/mL, and a volume of 280 mL, multiplying these will give a mass of: (0.69 g/mL)(280 mL) = 193.2 g. Rounded to 2 significant figures, this is 190 g gasoline.
For Part B: if we have a density of 0.79 g/mL, and a volume of 190 mL, multiplying these will give a mass of: (0.79 g/mL)(190 mL) = 150.1 g. Rounded to 2 significant figures, this is equal to 150 g ethanol.
Nuclear reactions are those that involve the nucleus of an atom. Nuclear fission involves the splitting of an atomic nucleus and the formation of two distinct atomic species. Nuclear fusion is indeed the combining of two atomic nuclei in order to form a single atomic species. Therefore the answer to the question is true.