Answer:
-0.5 m/s^2
Explanation:
Acceleration = change in velocity / total time
7.5 / 15 = 0.5
Answer:
ac = 2.86 m / s²
Explanation:
Image can detail the system to determine the force in the FA to understand the system into the applicated force
m = 100 kg , L = 3 m
∑ F = 0 ⇒ Ay - 100 kg + P * cos (45) = 0
Ay = 768.86 N
∑ Mₐ = α * I ₐ
I ₐ = m * L² / 3 ⇒ I ₐ = 100 kg * 4² m / 3
Replacing
P * sin (45) * 3 = α * 100 kg * 4² m / 3
α = 1.193 rad / s²
ac = α *2 ⇒ ac = 1.193 rad / s² * 2
ac = 2.86 m / s²
Answer:
The ball stops instantaneously at the topmost point of the motion.
Explanation:
Assume we have thrown a ball up in the air. For that we have given a force on the ball and it acquires an initial velocity in the upward direction.
The forces that resist the motion of the ball in the upward direction are the force of gravity and air resistance. The ball will instantaneously come to rest when the velocity of the ball reduces to zero.
The two forces acting in the downward direction reduces its speed continuously and it becomes zero at the topmost point.
Answer:
1-state what the lab is about, that is, what scientific concept (theory, principle, procedure, etc.) you are supposed to be learning about by doing the lab. You should do this briefly, in a sentence or two. If you are having trouble writing the opening sentence of the report, you can try something like: "This laboratory experiment focuses on X…"; "This lab is designed to help students learn about, observe, or investigate, X…." Or begin with a definition of the scientific concept: "X is a theory that…."
2-give the necessary background for the scientific concept by telling what you know about it (the main references you can use are the lab manual, the textbook, lecture notes, and other sources recommended by the lab manual or lab instructor; in more advanced labs you may also be expected to cite the findings of previous scientific studies related to the lab). In relatively simple labs you can do this in a paragraph following the initial statement of the learning context. But in more complex labs, the background may require more paragraphs.
Explanation:
Answer:
0.438kg/ms-¹
Explanation:
Momentum, denoted by p, can be calculated by using the formula;
p = mv
Where;
m = mass (kg)
v = velocity (m/s)
Momentum (p) of bird = 0.216 kg × 5.87 m/s = 1.268kg/ms-¹
Momentum (p) of crawling baby = 7.29 kg kg × 0.234 m/s = 1.706kg/ms-¹
Having calculated the momentum of the bird to be 1.268kg/ms-¹, and the momentum of the baby to be 1.706kg/ms-¹, the difference in momentum between the flying bird and the crawling baby is:
{1.706kg/ms-¹ - 1.268kg/ms-¹} = 0.438kg/ms-¹