Answer:
0.1 m/s
Explanation:
Please see attached photo for explanation.
Mass of 1st cart (m₁) = 500 g
Initial velocity of 1st cart (u₁) = 0.25 m/s
Mass of 2nd cart (m₂) = 750 g
Initial velocity of 2nd cart (u₂) = 0 m/s
Velocity (v) after collision =.?
m₁u₁ + m₂u₂ = v(m₁ + m₂)
(500 × 0.25) + (750 × 0) = v(500 + 750)
125 + 0 = v(1250)
125 = 1250v
Divide both side by 1250
v = 125 / 1250
v = 0.1 m/s
Thus, the two cart will move with a velocity of 0.1 m/s after collision.
Explanation:
Given that,
Electrostatic force, 
Distance, 
(a)
, q is the charge on the ion


(b) Let n is the number of electrons are missing from each ion. It can be calculated as :


n = 2
Hence, this is the required solution.
Answer:
The effective spring constant of the firing mechanism is 1808N/m.
Explanation:
First, we can use kinematics to obtain the initial velocity of the performer. Since we know the angle at which he was launched, the horizontal distance and the time in which it's traveled, we can calculate the speed by:

(This is correct because the horizontal motion has acceleration zero). Then:

Now, we can use energy to obtain the spring constant of the firing mechanism. By the conservation of mechanical energy, considering the instant in which the elastic band is at its maximum stretch as t=0, and the instant in which the performer flies free of the bands as final time, we have:

Then, plugging in the given values, we obtain:

Finally, the effective spring constant of the firing mechanism is 1808N/m.
Answer:
44.4 m/s
Explanation:
d = 80 m, t = 1.8 s, find v
d = v*t
v = d/t = 80/1.8 = 44.4 m/s