Answer:
Parachute exerts a force of 619.2 N upward
The net force is 86.4 N acting downward
Explanation:
As the gravitational acceleration g = 9.8 m/s2, the parachute help reduces the net acceleration to 1.2m/s. So it must exerted an upward acceleration on the skydiver of
9.8 - 1.2 = 8.6 m/s2
Since the skydiver mass is 72 kg, we can use Newton's 2nd law to calculate the force that causes this acceleration of 8.6
F = ma = 8.6*72 = 619.2 N acting upward
The net force is also the product of net acceleration and mass
= 1.2 * 72 = 86.4 N acting downward
Continuing in an existing state. Resistance to change.
Answer:
The maximum mass the bar can support without yielding = 32408.26 kg
Explanation:
Yield stress of the material (
) = 200 M Pa
Diameter of the bar = 4.5 cm = 45 mm
We know that yield stress of the bar is given by the formula
Yield Stress = 
⇒
=
---------------- (1)
⇒ Area of the bar (A) =
×
⇒ A =
× 
⇒ A = 1589.625 
Put all the values in equation (1) we get
⇒
= 200 × 1589.625
⇒
= 317925 N
In this bar the
is equal to the weight of the bar.
⇒
=
× g
Where
is the maximum mass the bar can support.
⇒
= 
Put all the values in the above formula we get
⇒
= 
⇒
= 32408.26 Kg
There fore the maximum mass the bar can support without yielding = 32408.26 kg
Answer:
The ball will fall on the X .
Explanation:
At height, when the aeroplane is in great speed , everything attached with it acquires the same speed . So ball will also have the same speed as the aeroplane have. When ball starts falling off , it gets detached from plane but , at the same time it continues to travel with its earlier speed , because of inertia of motion. So it remains stationary with respect to plane in horizontal direction . It has velocity with respect to plane only in vertical direction. Hence it will fall on the X. It is due to first law of motion.
Answer:
The circumference of the Earth is 24818.58 miles
Explanation:
Analysis conceptual : The formula of the circumference is the following:
L= π*D Formula (1)
Where:
L : is the length of the circumference in miles (mi)
π : is the constant
D : is the diameter of the circumference in miles (mi)
Known data
π = 3.1416
D= 7900 miles: Diameter of the Earth
Problem development
We apply the formula 1 to calculate the circumference of the Earth (L):
L= π*7900 miles
L= 24818.58 miles