You could simplify this work by factoring "3" out of all four terms, as follows:
3(x^2 + 2x - 3) =3(0) = 0
Hold the 3 for later re-insertion. Focus on "completing the square" of x^2 + 2x - 3.
1. Take the coefficient (2) of x and halve it: 2 divided by 2 is 1
2. Square this result: 1^2 = 1
3. Add this result (1) to x^2 + 2x, holding the "-3" for later:
x^2 +2x
4 Subtract (1) from x^2 + 2x + 1: x^2 + 2x + 1 -3 -1 = 0,
or x^2 + 2x + 1 - 4 = 0
5. Simplify, remembering that x^2 + 2x + 1 is a perfect square:
(x+1)^2 - 4 = 0
We have "completed the square." We can stop here. or, we could solve for x: one way would be to factor the left side:
[(x+1)-2][(x+1)+2]=0 The solutions would then be:
x+1-2=0=> x-1=0, or x=1, and
x+1 +2 = 0 => x+3=0, or x=-3. (you were not asked to do this).
5(n+6)=48
5n+30=48
5n=18
n=18/5
Answer:
(- 7, - 3) and (7, - 3)
Step-by-step explanation:
The best way to do this is to sketch the graph...when dealing with reflection in the y axis, the value for y remains the same and the value for x becomes negative if it was positive or becomes positive if it was negative
Answer:
y = 5cos(πx/4) +11
Step-by-step explanation:
The radius is 5 ft, so that will be the multiplier of the trig function.
The car starts at the top of the wheel, so the appropriate trig function is cosine, which is 1 (its maximum value) when its argument is zero.
The period is 8 seconds, so the argument of the cosine function will be 2π(x/8) = πx/4. This changes by 2π when x changes by 8.
The centerline of the wheel is the sum of the minimum and the radius, so is 6+5 = 11 ft. This is the offset of the scaled cosine function.
Putting that all together, you get
... y = 5cos(π/4x) + 11
_____
The answer selections don't seem to consistently identify the argument of the trig function properly. We assume that π/4(x) means (πx/4), where this product is the argument of the trig function.