Explanation:
The Coulomb's law states that the magnitude of each of the electric forces between two point-at-rest charges is directly proportional to the product of the magnitude of both charges and inversely proportional to the square of the distance that separates them:
In this case we have an electron (-e) and a proton (e), so:
In this case, the electric force is negative, therefore, the force is repulsive and its magnitude is:
Hello!
Vx = V0x + Ax*t
Vx = 18.1 + 2.4t
Let’s take time as 7.50 seconds:
Vx = 18.1 + 2.4*7.50
Vx = 18.1 + 18 = 36.1 m/s
Then, the final velocity of the car is 36.1 m/s.
Answer:
Explanation:
what is the smallest crater that each of these telescopes could resolve on our moon?
For moon ;
s = 3.8 × 10 ⁸ m
y = 1.22 λs/D
where;
λ = 400 nm = 400× 10 ⁻⁹
D = 2.4 m
The smallest crater for the hubble space is calculated as follows:
For Aceribo ;
y = 1.22 λs/D
where :
λ = 75 cm = 0.75 m
D = 305 m
Answer:
<h2>34.67 W</h2>
Explanation:
Power is the rate at which work is done and can be found by using the formula
p is the power in Watts (W)
w is the workdone in joules
t is time in s
but workdone = force × distance
From the question
force = 780 N
distance = 2 m
workdone = 780 × 2 = 1560 N
Since we now have the value of workdone we can find the power
We have
We have the final answer as
<h3>34.67 W</h3>
Hope this helps you