1) Focal length
We can find the focal length of the mirror by using the mirror equation:

(1)
where
f is the focal length

is the distance of the object from the mirror

is the distance of the image from the mirror
In this case,

, while

(the distance of the image should be taken as negative, because the image is to the right (behind) of the mirror, so it is virtual). If we use these data inside (1), we find the focal length of the mirror:

from which we find

2) The mirror is convex: in fact, for the sign convention, a concave mirror has positive focal length while a convex mirror has negative focal length. In this case, the focal length is negative, so the mirror is convex.
3) The image is virtual, because it is behind the mirror and in fact we have taken its distance from the mirror as negative.
4) The radius of curvature of a mirror is twice its focal length, so for the mirror in our problem the radius of curvature is:
Answer:
The cork moves up and down.
Explanation:
The cork moves up and down because of the waves produce due to tapping the surface of water. The cork experience movement due to placed on the water surface so when the wave passes through the medium by tapping of water, movement of cork also occur. Cork has high volume and lower mass so it floats on the water surface and experience movement due to waves.
Answer:
Net force on the wagon is 200 N
Explanation:
As we know by Newton's II law that net force on the system of mass is given as product of mass and acceleration
Here we know that
mass = 100 kg
a = 2 m/s/s
now we have



It is about 100oC at a pressure of 1.1 atmosphere. Hope this helps.
That's the period of time known as one solar "day". We subdivide it into 24 slices which we call "hours". Using this system of time units, the day is about 4 minutes longer than one complete axial rotation of the Earth.