It looks like you want to compute the double integral

over the region <em>D</em> with the unit circle <em>x</em> ² + <em>y</em> ² = 1 as its boundary.
Convert to polar coordinates, in which <em>D</em> is given by the set
<em>D</em> = {(<em>r</em>, <em>θ</em>) : 0 ≤ <em>r</em> ≤ 1 and 0 ≤ <em>θ</em> ≤ 2<em>π</em>}
and
<em>x</em> = <em>r</em> cos(<em>θ</em>)
<em>y</em> = <em>r</em> sin(<em>θ</em>)
d<em>x</em> d<em>y</em> = <em>r</em> d<em>r</em> d<em>θ</em>
Then the integral is

The value of the expression decreases
Answer:
2/5
Step-by-step explanation:
Answer:
-31/30
Step-by-step explanation:
-3/5 - 7/10 + 4/15 = -31/30
Answer:
The formula to find the sum of the first n terms of our sequence is n divided by 2 times the sum of twice the beginning term, a, and the product of d, the common difference, and n minus 1. The n stands for the number of terms we are adding together.