Answer:
Mars2 illuminated side of the planet is very heat, dark side very cool
Venus 2 a warm planet with a constant temperature across the entire surface
Explanation:
For this hypothetical case, when changing the planets they are changed with their current characteristics.
Case of Mars2
In this case, there is a planet with a very thin atmosphere, so the solar radiation reaches the ground without damping it, causing a lot of noise, so the illuminated side of the planet is very heat and when the dark side turns due to the little atmosphere it loses everything the heat for which it is very cold.
This thermal stress between the two sides of the planet continues constantly creating possible fruit trees in its rocky systems.
Case of Venus 2
The planet has a high atmospheric density, but it is very far from the sun, so the amount of radiation that arrives slightly warms the planet, but due to the thin atmosphere the losses for the dark period are very small, so the entire planet it is heated until it reaches an almost uniform temperature over its entire surface.
In this case we have a warm planet with a constant temperature across the entire surface, regardless of which side is lit.
This question may require more information to provide a more accurate answer.
A fault block mountain range is formed by tension as rocks are pulled away from each other. A fault block is a section of rock bounded on at least two sides by faults.
Faults commonly break the crust into large, fault bounded blocks. If normal faults down drop one fault block relative to other blocks on either side, the resulting feature is called a Graben.
A block that is uplifted relative to blocks in either side is called a horst.
Answer:
<h3>
Young modulus of elasticity for a gas is</h3><h2>
<em>Zero</em></h2>
Explanation:
<em>As</em><em> </em><em>the</em><em> </em><em>gas</em><em> </em><em>doesn't</em><em> </em><em>undergo</em><em> </em><em>any</em><em> </em><em>chan</em><em>g</em><em>es</em><em> </em>
<em>so</em><em> </em><em>the</em><em> </em><em>young</em><em> </em><em>modules</em><em> </em><em>of</em><em> </em><em>gas</em><em> </em><em>is</em><em> </em><em>not</em><em> </em><em>defined</em><em>.</em><em>.</em><em>.</em>
Answer:
The force per unit length is 
Explanation:
The current carrying by each wires = 2.85 A
The current in both wires flows in same direction.
The gap between the wires = 6.10 cm
Now we will use the below expression for the force per unit length. Moreover, before using the below formula we have to change the unit centimetre into meter. So, we just divide the centimetre with 100.
