Answer:
a) -41.1 Joule
b) 108.38 Kelvin
Explanation:
Pressure = P = 290 Pa
Initial volume of gas = V₁ = 0.62 m³
Final volume of gas = V₂ = 0.21 m³
Initial temperature of gas = T₁ = 320 K
Heat loss = Q = -160 J
Work done = PΔV
⇒Work done = 290×(0.21-0.62)
⇒Work done = -118.9 J
a) Change in internal energy = Heat - Work
ΔU = -160 -(-118.9)
⇒ΔU = -41.1 J
∴ Change in internal energy is -41.1 J
b) V₁/V₂ = T₁/T₂
⇒T₂ = T₁V₂/V₁
⇒T₂ = 320×0.21/0.62
⇒T₂ = 108.38 K
∴ Final temperature of the gas is 108.38 Kelvin
Answer: An acid is a substance that donates a proton and produces a conjugate base.
Explanation:
According to Bronsted-Lowry theory, an acid is a substance that donates a proton and produces a conjugate base while a base is a molecule or ion which accepts the proton.
An example of Bronsted-Lowry acid and base is Ethanoic acid, CH3COOH and hydroxide ion, OH- respectively as shown in the reaction below
CH3COOH(aq) + OH-(aq) <---> CH3COO-(aq) + H2O(l)
Thus, ethanoic acid acts as an acid by donating a proton to the hydroxide ion which accepts it, thus producing ethanoate ion, CH3COO- as a conjugate base.
Weight. Because there is less gravity on the moon.
Out of the choices given, the best choice to explain the direction of the moving force of air is from area o high pressure to areas of low pressure.