Answer:
It depends on what the object is and what planet it is on and what the conditions are.
Answer:
(a). The strength of the magnetic field is 0.1933 T.
(b). The magnetic flux through the loop is zero.
Explanation:
Given that,
Radius = 11.9 cm
Magnetic flux 
(a). We need to calculate the strength of the magnetic field
Using formula of magnetic flux





Put the value into the formula


(b). If the magnetic field is directed parallel to the plane of the loop,
We need to calculate the magnetic flux through the loop
Using formula of flux

Here, 


Hence, (a). The strength of the magnetic field is 0.1933 T.
(b). The magnetic flux through the loop is zero.
Answer:
2500 J
Explanation:
We can solve the problem by using the first law of thermodynamics:

where
Uf is the final internal energy of the system
Ui is the initial internal energy
Q is the heat added to the system
W is the work done by the system
In this problem, we have:
Q = +1000 J (heat that enters the system)
W = +500 J (work done by the system)
Ui = 2000 J (initial internal energy)
Using these numbers, we can re-arrange the equation to calculate the final internal energy:

Answer:
1)The position change of almost any manually operated room light switch.
2) Sunlight striking a point on the ground on a partly cloudy and windy day
Explanation: