Answer:
As a mass greater than that of baseball, at the moment of the bowling wave the moment of the baseball ball is also greater
Explanation:
This problem is an application of momentum and momentum. When the astronaut pushed balls, he needed more force to move the ball of greater mass (bowling). The expression for soul is
p = m v
Besibol Blade
p1 = m1 v
Bowling ball
p2 = m2 v
As a mass greater than that of baseball, at the moment of the bowling wave the moment of the baseball ball is also greater
p2 >> p1
For the answer to the question above,
<span>Q = amount of heat (kJ) </span>
<span>cp = specific heat capacity (kJ/kg.K) = 4.187 kJ/kgK </span>
<span>m = mass (kg) </span>
<span>dT = temperature difference between hot and cold side (K). Note: dt in °C = dt in Kelvin </span>
<span>Q = 100kg * (4.187 kJ/kgK) * 15 K </span>
<span>Q = 6,280.5 KJ = 6,280,500 J = 1,501,075.5 cal</span>
friction and the density of the air.
Answer:
W = 0
Explanation:
When an electron moves perpendicular to a uniform B-field. If the field is in a vacuum, the magnetic field B is the dominant factor determining the motion. Since the magnetic force F is perpendicular to the direction of travel, an electron follows a curved path in a magnetic field. The electron continues to follow this curved path until it forms a complete circle. Another way to look at this is that the magnetic force F is always perpendicular to velocity v, so that it does no work on the charged particle. The particle’s kinetic energy and speed thus remain constant. The direction of motion is affected but not the speed.
W = F*d*Cos ∅ = F*d*Cos 90° = 0 where d is the displacement.
The pic shown can help to understand the explanation.