Answer:
Thus, if field were sampled at same distance, the field due to short wire is greater than field due to long wire.
Explanation:
The magnetic field, B of long straight wire can be obtained by applying ampere's law

I is here current, and r's the distance from the wire to the field of measurement.
The magnetic field is obviously directly proportional to the current wire. From this expression.
As the resistance of the long cable is proportional to the cable length, the short cable becomes less resilient than the long cable, so going through the short cable (where filled with the same material) is a bigger amount of currents. If the field is measured at the same time, the field is therefore larger than the long wire because of the short wire.
Answer:
T₂ = 20.06 ° C
Explanation:
Given
P = 90 kg, T₁ = 20 ° C, h = 30 m, c = 1.82 kJ / Kg * ° C
Using the formula to determine the final temperature of the water
T₂ = T₁ * P * h / Eₐ * c
The work done of the person to the water
Eₐ = 1000 kg / m³ * 5 m³ * 9.8 m / s²
Eₐ = 49000 N
T₂ = 20 ° C +[ (90 kg * 30m) / (49000 N * 1.82) ]
T₂ = 20.06 ° C
The answer is commensalism because commensalism is a relationship where an organism is benefitted and the other is neither benefitted nor harmed. The barnacle is being benefited and the whale is not being benefited or harmed.
Answer:
It allows us to understand nature much more deeply than does qualitative description alone.
Explanation:
Without explaining the measurements, a quantity cannot always be measured.
Hope this helped, and please mark as Brainliest :)
The electrostatic force is directly proportional to the product of the charges, by Coulomb's law.
F α Qq
If the charges are now half the initial charges:
<span>F α (1/2)Q *(1/2)q
</span>
F α (1/4)Q<span>q
The new force when the charges are each halved is (1/4) the first initial force experienced at full charge.</span>