Data:

n (Wave node)
V (Wave belly)
L (Wave length)
<span>The number of bells is equal to the number of the harmonic emitted by the string.
</span>

Wire 2 → 2º Harmonic → n = 2







Wire 1 → 1º Harmonic or Fundamental rope → n = 1



If, We have:
V = 42L
Soon:



Answer:
<span>The fundamental frequency of the string:
</span>
21 Hz
D, water vapor. Gaseous state would have more kinetic energy, they are moving faster. If you have to compare the same state, then higher temperature would have the higher kinetic energy. But if you have solid and liquid at the same temperature - then liquid would have more.
Answer : The temperature when the water and pan reach thermal equilibrium short time later is, 
Explanation :
In this problem we assumed that heat given by the hot body is equal to the heat taken by the cold body.


where,
= specific heat of aluminium = 
= specific heat of water = 
= mass of aluminum = 0.500 kg = 500 g
= mass of water = 0.250 kg = 250 g
= final temperature of mixture = ?
= initial temperature of aluminum = 
= initial temperature of water = 
Now put all the given values in the above formula, we get:


Therefore, the temperature when the water and pan reach thermal equilibrium short time later is, 
Answer:
T = 25 N
Explanation:
The question says that "A 25 n block is suspended by a wire from the ceiling vitamin the tension that appears in the wire
?"
Weight of the block, W = 25 N
Weight of a body acts in downward direction and tension acts in upward direction. It would mean that,
Tension = weight of the block
T = mg
T = 25 N
Hence, the tension in the wire is 25 N.