If swimmers had a choice of the water slides shown in this figure,
they would all go home dry, since there is no figure. I'll have to try to
answer this question based on only the words in the text, augmented
only by my training, education, life experience, and human logic.
-- Both slides are frictionless. So no energy is lost as a swimsuit
scrapes along the track, and the swimmer's kinetic energy at the
bottom is equal to the potential energy he had at the top.
-- Both slides start from the same height. So the same swimmer
has the same potential energy at the top of either one, and therefore
the same kinetic energy at the bottom of either one.
-- So the difference in the speeds of two different swimmers
on the slides depends only on the difference in the swimmers'
mass, and is not influenced by the shape or length of the slides
(as long as the slides remain frictionless).
If both swimmers have the same mass, then v₁ = v₂ .
Answer with explanation :
The negative sign means that the potential energy decreases by the movement of the electron.
negative charge at rest in an electric field moves toward the region of an electric field , so that its potential energy will diminish and change into the kinetic energy of motion. The total energy remains constant.
Positive charges will move downhill because of convention. It is to stay in accordance with other potential theories, particularly gravity, where the "charge" is mass, that moves downwards in the gravitational potential field expressed by ϕ(r)=−GM|r|ϕ(r)=−GM|r|. In an electronic system, howbeit, positive charges are fixed in their position within a component (e.g., a wire), therefore instead of the mobile,the negative charges, electrons, move uphill.
Answer:
False
Explanation:
As we know that, the Balmer series gives the n values as,
.
.
Now the value of wavelength can be calculated as,
.
Here,
.
And
.
Now,
.
Therefore,

Therefore, the wavelength of Balmer series lies in visible region which is 547 nm.
They are unbalanced forces ..... Hope this helps :3