Answer:
$ 17172.28
Step-by-step explanation:
Each period is 1/4 year ...in ten years there are 40 periods
Interest in decimal is .036 ..... per period this is .036/4 = .009
The FV = PV (1+i)^n FV = Future value PV = present value
FV = 12 000 ( 1 + .009)^40 =17172.28
Answer:
15
Step-by-step explanation:
Let n, d, q represent the numbers of nickels, dimes, and quarters. The problem statement tells us ...
n +d +q = 37
n = d +4
q = n +2
___
Rearranging the second equation gives ...
d = n -4
Substituting that into the first, we get ...
n + (n -4) +q = 37
2n +q = 41 . . . . . . . add 4 and simplify
Rearranging the third original equation gives ...
n = q -2
Substituting into the equation we just made, we get ...
2(q -2) +q = 41
3q = 45 . . . . . . . . add 4 and simplify
q = 15 . . . . . . . . . divide by 3
Joe has 15 quarters.
_____
<em>Check</em>
The number of nickels is 2 fewer, so is 13. The number of dimes is 4 fewer than that, so is 9. The total number of coins is 15 + 13 + 9 = 37, as required.
6 4/5 as improper fraction is 34/5
5 3/4 as improper fraction is 23/4
3 1/3 by 25/4 is 8/15
14/3 by 3 1/2 is 4/3
3 1/4 by 5 1/2 is 13/22
The rigth equation to anticipate the profit after t years is p(t) = 10,000 (1.075)^t
So, given that both store A and store B follow the same equations but t is different for them, you can right:
Store A: pA (t) 10,000 (1.075)^t
Store B: pB(t'): 10,000 (1.075)^t'
=> pA(t) / pB(t') = 1.075^t / 1.075^t'
=> pA(t) / pB(t') = 1.075 ^ (t - t')
And t - t' = 0.5 years
=> pA(t) / pB(t') = 1.075 ^ (0.5) = 1.0368
or pB(t') / pA(t) = 1.075^(-0.5) = 0.964
=> pB(t') ≈ 0.96 * pA(t)
Which means that the profit of the store B is about 96% the profit of store A at any time after both stores have opened.