In this case we have an ARM fixed for 6 years and adjust after the initial first 6 years every 2 years after. The basic idea behind a ARM is that the interest changes periodically, but since our ARM is fixed for 6 years, our going to calculate the monthly payment during the initial period using the formula:

where

is the monthly payment

is the amount

is the interest rate in decimal form

is the number years
First we need to convert our interest rate of 4% to decimal form by dividing it by 100%:

We also know from our question that

and

, so lets replace those values into our formula to find the monthly payment:


We can conclude that the monthly payment during the initial period is $1071.58<span />
Positive 20 and negative 10 is a net amount of 10. 10 minutes is 1/6 of an hour. 5*1/6=5/6km
Answer:
I think its D
Step-by-step explanation:
lmk if its wrong
Answer:
At least one of the population means is different from the others.
Step-by-step explanation:
ANOVA is a short term or an acronym for analysis of variance which was developed by the notable statistician Ronald Fisher. The analysis of variance (ANOVA) is typically a collection of statistical models with their respective estimation procedures used for the analysis of the difference between the group of means found in a sample. Simply stated, ANOVA helps to ensure we have a balanced data by splitting the observed variability of a data set into random and systematic factors.
In Statistics, the random factors doesn't have any significant impact on the data set but the systematic factors does have an influence.
Basically, the analysis of variance (ANOVA) procedure is typically used as a statistical tool to determine whether or not the mean of two or more populations are equal through the use of null hypothesis or a F-test.
Hence, the null hypothesis for an ANOVA is that all treatments or samples come from populations with the same mean. The alternative hypothesis is best stated as at least one of the population means is different from the others.
5+y+z I think x Something like that.