Answer:
c.A 90% confidence level and a sample size of 300 subjects.
Step-by-step explanation:
In a sample with a number n of people surveyed with a probability of a success of
, and a confidence level
, we have the confidence interval with a margin of error of:
![M = z\sqrt{\frac{\pi(1-\pi)}{n}}](https://tex.z-dn.net/?f=M%20%3D%20z%5Csqrt%7B%5Cfrac%7B%5Cpi%281-%5Cpi%29%7D%7Bn%7D%7D)
In which
z is the zscore that has a pvalue of
.
In this problem
The proportions are the same for all the options, so we are going to write our margins of error as functions of ![\sqrt{\pi(1-\pi)}](https://tex.z-dn.net/?f=%5Csqrt%7B%5Cpi%281-%5Cpi%29%7D)
So
a.A 99% confidence level and a sample size of 50 subjects.
![n = 50](https://tex.z-dn.net/?f=n%20%3D%2050)
99% confidence interval
So
, z is the value of Z that has a pvalue of
, so
.
The margin of error is
![M = z\sqrt{\frac{\pi(1-\pi)}{n}} = \frac{2.575}{\sqrt{50}}\sqrt{\pi(1-\pi)} = 0.3642\sqrt{\pi(1-\pi)}](https://tex.z-dn.net/?f=M%20%3D%20z%5Csqrt%7B%5Cfrac%7B%5Cpi%281-%5Cpi%29%7D%7Bn%7D%7D%20%3D%20%5Cfrac%7B2.575%7D%7B%5Csqrt%7B50%7D%7D%5Csqrt%7B%5Cpi%281-%5Cpi%29%7D%20%3D%200.3642%5Csqrt%7B%5Cpi%281-%5Cpi%29%7D)
b.A 90% confidence level and a sample size of 50 subjects.
![n = 50](https://tex.z-dn.net/?f=n%20%3D%2050)
90% confidence interval
So
, z is the value of Z that has a pvalue of
, so
.
The margin of error is
![M = z\sqrt{\frac{\pi(1-\pi)}{n}} = \frac{1.645}{\sqrt{50}}\sqrt{\pi(1-\pi)} = 0.2623\sqrt{\pi(1-\pi)}](https://tex.z-dn.net/?f=M%20%3D%20z%5Csqrt%7B%5Cfrac%7B%5Cpi%281-%5Cpi%29%7D%7Bn%7D%7D%20%3D%20%5Cfrac%7B1.645%7D%7B%5Csqrt%7B50%7D%7D%5Csqrt%7B%5Cpi%281-%5Cpi%29%7D%20%3D%200.2623%5Csqrt%7B%5Cpi%281-%5Cpi%29%7D)
c.A 90% confidence level and a sample size of 300 subjects.
![n = 300](https://tex.z-dn.net/?f=n%20%3D%20300)
90% confidence interval
So
, z is the value of Z that has a pvalue of
, so
.
The margin of error is
![M = z\sqrt{\frac{\pi(1-\pi)}{n}} = \frac{1.645}{\sqrt{300}}\sqrt{\pi(1-\pi)} = 0.0950\sqrt{\pi(1-\pi)}](https://tex.z-dn.net/?f=M%20%3D%20z%5Csqrt%7B%5Cfrac%7B%5Cpi%281-%5Cpi%29%7D%7Bn%7D%7D%20%3D%20%5Cfrac%7B1.645%7D%7B%5Csqrt%7B300%7D%7D%5Csqrt%7B%5Cpi%281-%5Cpi%29%7D%20%3D%200.0950%5Csqrt%7B%5Cpi%281-%5Cpi%29%7D)
This produces smallest margin of error.
d.A 99% confidence level and a sample size of 300 subjects.
![n = 300](https://tex.z-dn.net/?f=n%20%3D%20300)
99% confidence interval
So
, z is the value of Z that has a pvalue of
, so
.
The margin of error is
![M = z\sqrt{\frac{\pi(1-\pi)}{n}} = \frac{2.575}{\sqrt{300}}\sqrt{\pi(1-\pi)} = 0.1487\sqrt{\pi(1-\pi)}](https://tex.z-dn.net/?f=M%20%3D%20z%5Csqrt%7B%5Cfrac%7B%5Cpi%281-%5Cpi%29%7D%7Bn%7D%7D%20%3D%20%5Cfrac%7B2.575%7D%7B%5Csqrt%7B300%7D%7D%5Csqrt%7B%5Cpi%281-%5Cpi%29%7D%20%3D%200.1487%5Csqrt%7B%5Cpi%281-%5Cpi%29%7D)