Answer:
calculate the cars acceleration usingv=u+at
Explanation:
m/s. After 5 s the car reaches the bottome of the hill. Its speed at the bottom of the ... accelerating left a rownie. 10. A cart slows down while moving away from the ... does it need to accelerate to a velocity of 20 m/s
Answer;
The above statement is false
Explanation;
Symmetrical distribution, commonly known as symmetric distribution or normal distribution, is typically unimodal, meaning it shows only one peak in graph form.
It is a type of distribution where the left side of the distribution mirrors the right side. By definition, a symmetric distribution is never a skewed distribution.
All normal distributions are symmetric and have bell-shaped density curves with a single peak.
Answer:
The charge on the dust particle is 
Explanation:
From the question we are told that
The length is 
The width is 
The charge is 
The mass suspended in mid-air is 
Generally the electric field on the carpet is mathematically represented as

Where
is the permittivity of free space with value 
substituting values


Generally the electric force keeping the dust particle on the air equal to the force of gravity acting on the particles

=> 
=> 
=> 
=> 
Answer: 250n
Explanation:
The formula for gravitational force is: F = (gMm)/r^2
There are two factors at play here:
1) The mass of the planet 'M'
2) The radius 'r'
We can ignore the small M and the g, they are constants that do not alter the outcome of this question.
You can see that both M and r are double that of earth. So lets say earth has M=1 and r=1. Then, new planet would have M=2 and r=2. Let's sub these two sets into the equation:
Earth. F = M/r^2 = 1/1
New planet. F = M/r^2 = 2/4 = 1/2
So you can see that the force on the new planet is half of that felt on Earth.
The question tells us that the force on earth is 500n for this person, so then on the new planet it would be half! So, 250n!
Answer:
1) 0.43 meters per second
2) 0.21 meters per second
3) 1.02 
4) 0.66 seconds
Explanation:
part 1
By conservation of energy, the maximum kinetic energy (K) of the block is at equilibrium point where the potential energy is zero. So, at the equilibrium kinetic energy is equal to maximum potential energy (U):


With m the mass, v the speed, k the spring constant and xmax the maximum position respect equilibrium position. Solving for v

part 2
Again by conservation of energy we have kinetic energy equal potential energy:


part 3
Acceleration can be find using Newton's second law:

with F the force, m the mass and a the acceleration, but elastic force is -kx, so:


part 4
The period of an oscillator is the time it takes going from one extreme to the other one, that is going form 4.5 cm to -4.5 cm respect the equilibrium position. That period is:

So between 0 and 4.5 cm we have half a period:
