Answer:
The radius, in inches, of the base of the cone will be:
r = 6 inches
Hence, option B is correct.
Step-by-step explanation:
Given
The Volume of a right circular cone V = 24 π cubic inches
The height of the cone h = 2 inches
To determine
The radius of the base of the cone r = ?
Using the formula involving Volume m, height h, and radius r of a right circular cone.
![V\:=\frac{1}{3}h\:\pi \:\:r^2\:](https://tex.z-dn.net/?f=V%5C%3A%3D%5Cfrac%7B1%7D%7B3%7Dh%5C%3A%5Cpi%20%5C%3A%5C%3Ar%5E2%5C%3A)
substituting V = 24 π, h = 2 to find the radius r
![\left(24\pi \right)=\frac{1}{3}\left(2\right)\:\pi \:r^2](https://tex.z-dn.net/?f=%5Cleft%2824%5Cpi%20%5Cright%29%3D%5Cfrac%7B1%7D%7B3%7D%5Cleft%282%5Cright%29%5C%3A%5Cpi%20%5C%3Ar%5E2)
switch sides
![\frac{1}{3}\left(2\right)\pi r^2=\left(24\pi \right)](https://tex.z-dn.net/?f=%5Cfrac%7B1%7D%7B3%7D%5Cleft%282%5Cright%29%5Cpi%20r%5E2%3D%5Cleft%2824%5Cpi%20%5Cright%29)
![\frac{1}{3}2\pi r^2=24\pi](https://tex.z-dn.net/?f=%5Cfrac%7B1%7D%7B3%7D2%5Cpi%20r%5E2%3D24%5Cpi)
simplify
![2\pi r^2=72\pi](https://tex.z-dn.net/?f=2%5Cpi%20r%5E2%3D72%5Cpi)
Divide both sides by 2π
![\frac{2\pi r^2}{2\pi }=\frac{72\pi }{2\pi }](https://tex.z-dn.net/?f=%5Cfrac%7B2%5Cpi%20r%5E2%7D%7B2%5Cpi%20%7D%3D%5Cfrac%7B72%5Cpi%20%7D%7B2%5Cpi%20%7D)
![r^2=36](https://tex.z-dn.net/?f=r%5E2%3D36)
![\mathrm{For\:}x^2=f\left(a\right)\mathrm{\:the\:solutions\:are\:}x=\sqrt{f\left(a\right)},\:\:-\sqrt{f\left(a\right)}](https://tex.z-dn.net/?f=%5Cmathrm%7BFor%5C%3A%7Dx%5E2%3Df%5Cleft%28a%5Cright%29%5Cmathrm%7B%5C%3Athe%5C%3Asolutions%5C%3Aare%5C%3A%7Dx%3D%5Csqrt%7Bf%5Cleft%28a%5Cright%29%7D%2C%5C%3A%5C%3A-%5Csqrt%7Bf%5Cleft%28a%5Cright%29%7D)
![r=\sqrt{36},\:r=-\sqrt{36}](https://tex.z-dn.net/?f=r%3D%5Csqrt%7B36%7D%2C%5C%3Ar%3D-%5Csqrt%7B36%7D)
Thus,
![r=6,\:r=-6](https://tex.z-dn.net/?f=r%3D6%2C%5C%3Ar%3D-6)
As we know that the radius can not be negative.
Therefore, the radius, in inches, of the base of the cone will be:
Hence, option B is correct.