Answer:
Juno scientific payload includes:
- A gravity/radio science system (Gravity Science)
- A six-wavelength microwave radiometer for atmospheric sounding and composition (MWR)
- A vector magnetometer (MAG)
- Plasma and energetic particle detectors (JADE and JEDI)
- A radio/plasma wave experiment (Waves)
- An ultraviolet imager/spectrometer (UVS)
- An infrared imager/spectrometer (JIRAM)
Explanation:
Each mission of NASA has a specific set of instruments that it uses to perform scientific experiments on the desired heavenly body. In case of Juno, the mission for Jupiter has a series of instruments that would study domains of gravitational forces, magnetic effect, particle detection, radiation detection, UV/IR imaging, and plasma experiments.
Answer: Brittle
Explanation:
took the test and I chose Soft, Soft is the wrong answer don't choose it. The CORRECT ANSWER IS BRITTLE
Answer:
The unrealistically large acceleration experienced by the space travelers during their launch is 2.7 x 10⁵ m/s².
How many times stronger than gravity is this force? 2.79 x 10⁴ g.
Explanation:
given information:
s = 220 m
final speed, vf = 10.97 km/s = 10970 m/s
g = 9.8 m/s²
he unrealistically large acceleration experienced by the space travelers during their launch
vf² = v₀²+2as, v₀ = 0
vf² = 2as
a =vf²/2s
= (10970)²/(2x220)
= 2.7 x 10⁵ m/s²
Compare your answer with the free-fall acceleration
a/g = 2.7 x 10⁵/9.8
a/g = 2.79 x 10⁴
a = 2.79 x 10⁴ g
The answer should be B) Scientific theories and laws develop from the acquisition of scientific knowledge. Hope this helps you.
Answer:
a) 19440 km/h²
b) 10 sec
Explanation:
v₀ = initial velocity of the car = 45 km/h
v = final velocity achieved by the car = 99 km/h
d = distance traveled by the car while accelerating = 0.2 km
a = acceleration of the car
Using the kinematics equation
v² = v₀² + 2 a d
99² = 45² + 2 a (0.2)
a = 19440 km/h²
b)
t = time required to reach the final velocity
Using the kinematics equation
v = v₀ + a t
99 = 45 + (19440) t
t = 0.00278 h
t = 0.00278 x 3600 sec
t = 10 sec