1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
lutik1710 [3]
2 years ago
14

A 70.0-kg person throws a 0.0480-kg snowball forward with a ground speed of 33.5 m/s. A second person, with a mass of 55.0 kg, c

atches the snowball. Both people are on skates. The first person is initially moving forward with a speed of 3.90 m/s, and the second person is initially at rest. What are the velocities of the two people after the snowball is exchanged? Disregard the friction between the skates and the ice. (Take the direction the snowball is thrown to be the positive direction. Indicate the direction with the sign of your answer.)
Physics
1 answer:
saw5 [17]2 years ago
8 0

Answer:

The final velocity of the thrower is \bf{3.88~m/s} and the final velocity of the catcher is \bf{0.029~m/s}.

Explanation:

Given:

The mass of the thrower, m_{t} = 70~Kg.

The mass of the catcher, m_{c} = 55~Kg.

The mass of the ball, m_{b} = 0.0480~Kg.

Initial velocity of the thrower, v_{it} = 3.90~m/s

Final velocity of the ball, v_{fb} = 33.5~m/s

Initial velocity of the catcher, v_{ic} = 0~m/s

Consider that the final velocity of the thrower is v_{ft}. From the conservation of momentum,

&& m_{t}v_{ft} + m_{b}v_{fb} = (m_{t} + m_{b})v_{it}\\&or,& v_{ft} = \dfrac{(m_{t} + m_{b})v_{it} - m_{b}v_{fb}}{m_{t}}\\&or,& v_{ft} = \dfrac{(70 + 0.0480)(3.90) - (0.0480)(33.5)}{70}\\&or,& v_{ft} = 3.88~m/s

Consider that the final velocity of the catcher is v_{fc}. From the conservation of momentum,

&& (m_{c} + m_{b})v_{fc} = m_{b}v_{it}\\&or,& v_{fc} = \dfrac{m_{b}v_{it}}{(m_{c} + m_{b})}\\&or,& v_{fc} = \dfrac{(0.048)(33.5)}{(55.0 + 0.0480)}\\&or,& v_{fc} = 0.029~m/s

Thus, the final velocity of thrower is 3.88~m/s and that for the catcher is 0.029~m/s.

You might be interested in
A standard 1 kilogram weight is a cylinder 54.0 mm in height and 55.0 mm in diameter. what is the density of the material
denis-greek [22]

The radius of the cylinder is equal to half the diameter:

r=\frac{d}{2}=\frac{55.0 mm}{2}=27.5 mm

The volume of the cylinder is given by:

V=\pi r^2 h=\pi (27.5 mm)^2 (54.0 mm)=1.28 \cdot 10^5 mm^3

where h is the heigth of the cylinder. Converting into meters,

V=1.28 \cdot 10^{-4} m^3

And the density of the material will be given by the ratio between the mass and the volume:

d=\frac{m}{V}=\frac{1 kg}{1.28 \cdot 10^{-4} m^3}=7812.5 kg/m^3

5 0
3 years ago
In an electric field, 0.90 joule of work is required to bring 0.45 coulomb of charge from point a to point
jarptica [38.1K]
The difference in electric potential energy between the two points is
\Delta U = q \Delta V
where q is the magnitude of the charge and \Delta V is the electric potential difference.

But for energy conservation, the difference in electric potential energy \Delta U between the two points is equal to the work done to move the charge between A and B:
W=\Delta U
so we have
W=q \Delta V

and by substituting the numbers of the problem, we find the value of \Delta V:
\Delta V =  \frac{W}{q}= \frac{0.90 J}{0.45 C}=2 V
3 0
2 years ago
I need the answer asap everyone have a good day bye
Slav-nsk [51]

Im pretty sure its A cuz is closer to the earth.

5 0
2 years ago
Please Answer the question in the picture ASAP PLEASE
attashe74 [19]

Answer:

HERE IS YOUR ANSWER

Explanation:

PLEASE MARK MY ANSWER AS BRAINLIEST IF THE ANSWERS ARE CORRECT .

Beacuse of the loose connection of the wire .

Straight

5 0
2 years ago
How would you find the total energy stored in the
likoan [24]

Answer:

The energy of the capacitors connected in parallel is 0.27 J

Given:

C = 2.0\micro F = 2.0\times 10^{- 6} F

C' = 4.0\micro F = 4.0\times 10^{- 6} F

Potential difference, V = 300 V

Solution:

Now, we know that the equivalent capacitance of the two parallel connected capacitors is given by:

C_{eq} = C + C' = 2.0 + 4.0 = 6.0\micro F = 6.0\times 10^{- 6} F

The energy of the capacitor, E is given by;

E = \frac{1}{2}C_{eq}V^{2}

E = \frac{1}{2}\times 6.0\times 10^{- 6}\times 300^{2} = 0.27 J

6 0
2 years ago
Other questions:
  • Can you tell me at least three states of matter that are fluids?
    5·1 answer
  • Which type of solute is least likely to dissolve in water
    15·2 answers
  • What method of heat transfer does heat energy use to reach earth from the sun?
    14·2 answers
  • A 4kg table pushed to the right with an applied force of 50N. The table has a net acceleration of 10 m/s^2 to the right. What is
    13·1 answer
  • A 50 kilogram woman wearing a seatbelt is traveling in a car that is moving with a velocity of +10 meters per second. In an emer
    8·1 answer
  • List three different types of magnets
    14·2 answers
  • When a permanent magnet picks up an iron nail, the nail also becomes a magnet. How does the magnetized nail differ from an elect
    11·1 answer
  • The spring to launch a pinball in a pinball machine is compressed 25 cm and has a spring constant of 140 N/m.
    11·1 answer
  • A fly is on hanging on the edge of one of the blades. Neglecting the width of the fan's motor,
    15·1 answer
  • Dimensional formula of Amplitude ?​
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!