1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
lutik1710 [3]
3 years ago
14

A 70.0-kg person throws a 0.0480-kg snowball forward with a ground speed of 33.5 m/s. A second person, with a mass of 55.0 kg, c

atches the snowball. Both people are on skates. The first person is initially moving forward with a speed of 3.90 m/s, and the second person is initially at rest. What are the velocities of the two people after the snowball is exchanged? Disregard the friction between the skates and the ice. (Take the direction the snowball is thrown to be the positive direction. Indicate the direction with the sign of your answer.)
Physics
1 answer:
saw5 [17]3 years ago
8 0

Answer:

The final velocity of the thrower is \bf{3.88~m/s} and the final velocity of the catcher is \bf{0.029~m/s}.

Explanation:

Given:

The mass of the thrower, m_{t} = 70~Kg.

The mass of the catcher, m_{c} = 55~Kg.

The mass of the ball, m_{b} = 0.0480~Kg.

Initial velocity of the thrower, v_{it} = 3.90~m/s

Final velocity of the ball, v_{fb} = 33.5~m/s

Initial velocity of the catcher, v_{ic} = 0~m/s

Consider that the final velocity of the thrower is v_{ft}. From the conservation of momentum,

&& m_{t}v_{ft} + m_{b}v_{fb} = (m_{t} + m_{b})v_{it}\\&or,& v_{ft} = \dfrac{(m_{t} + m_{b})v_{it} - m_{b}v_{fb}}{m_{t}}\\&or,& v_{ft} = \dfrac{(70 + 0.0480)(3.90) - (0.0480)(33.5)}{70}\\&or,& v_{ft} = 3.88~m/s

Consider that the final velocity of the catcher is v_{fc}. From the conservation of momentum,

&& (m_{c} + m_{b})v_{fc} = m_{b}v_{it}\\&or,& v_{fc} = \dfrac{m_{b}v_{it}}{(m_{c} + m_{b})}\\&or,& v_{fc} = \dfrac{(0.048)(33.5)}{(55.0 + 0.0480)}\\&or,& v_{fc} = 0.029~m/s

Thus, the final velocity of thrower is 3.88~m/s and that for the catcher is 0.029~m/s.

You might be interested in
What is the net force on this object?
Andrew [12]

22 newtons is the net force



8 0
3 years ago
Read 2 more answers
5.
SVETLANKA909090 [29]

Answer: black

Explanation: When green light is shone on a red object, it absorbs all of the green light and not reflecting anything. Hence, it appears black.

8 0
3 years ago
What two particles in an atom are equal in number
Ainat [17]
The two particles that are equal in a atom is the proton and electron.
8 0
3 years ago
What force does a trampoline have to apply to a 45.0-kg gymnast to accelerate her straight up at 7.50 m/s^2? (a) 104N (b) 338 N
Brilliant_brown [7]

Answer:

b) 338 N

Explanation: let m be the mass of the gymnast and a be the acceleration of the gymnast.

the force required to accelerate the gymnast is given by:

F = m×a

  = (45.0)×(7.50)

  = 337.5 N

Therefore, the force a trampoline has to apply is 138 N.

6 0
3 years ago
If a 25 kg object is moving at a velocity of 10 m/s, the object has<br> energy. Calculate it.
Paul [167]

Answer: Your answer is 1250J

Explanation:

K E = 1/2 m v 2

The mass is  

m = 25 k g

The velocity is  v = 10 m s − 1

So,

K E = 1 /2 x25 x 10 2^2= 1250 J

pls mark brainiest answer  

4 0
2 years ago
Other questions:
  • 1 what is global climate change. <br>2 consequences and the way forward​
    10·1 answer
  • The voltage of electricity traveling away from a power plant is very high. How high may it be? Why is the voltage so high?
    10·1 answer
  • Pleaseeee hurry!!!
    7·1 answer
  • Why are magnetic fields evidence of sea floor spreading
    13·1 answer
  • A gas undergoes a process in a piston–cylinder assembly during which the pressure-specific volume relation is pv1.1 = constant.
    10·1 answer
  • If two capacitors, A and B, have the same area and dielectric constant, but the distance between the plates of A is twice the di
    13·1 answer
  • 7. It is the art of drawing solid objects on two-dimensional surfaces.<br>​
    8·1 answer
  • Planet X has three times the free-fall acceleration of Earth.
    12·1 answer
  • Water falls off a cliff of height 20m at a rate of 50kg per second
    10·1 answer
  • The magnitude of the force associated with the gravitational field is constant and has a value f. A particle is launched from po
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!