![\bf \qquad \qquad \textit{ratio relations} \\\\ \begin{array}{ccccllll} &\stackrel{ratio~of~the}{Sides}&\stackrel{ratio~of~the}{Areas}&\stackrel{ratio~of~the}{Volumes}\\ &-----&-----&-----\\ \cfrac{\textit{similar shape}}{\textit{similar shape}}&\cfrac{s}{s}&\cfrac{s^2}{s^2}&\cfrac{s^3}{s^3} \end{array}\\\\ \rule{31em}{0.25pt}\\\\ \cfrac{\textit{similar shape}}{\textit{similar shape}}\qquad \cfrac{s}{s}=\cfrac{\sqrt{s^2}}{\sqrt{s^2}}=\cfrac{\sqrt[3]{s^3}}{\sqrt[3]{s^3}}](https://tex.z-dn.net/?f=%20%5Cbf%20%5Cqquad%20%5Cqquad%20%5Ctextit%7Bratio%20relations%7D%20%5C%5C%5C%5C%20%5Cbegin%7Barray%7D%7Bccccllll%7D%20%26%5Cstackrel%7Bratio~of~the%7D%7BSides%7D%26%5Cstackrel%7Bratio~of~the%7D%7BAreas%7D%26%5Cstackrel%7Bratio~of~the%7D%7BVolumes%7D%5C%5C%20%26-----%26-----%26-----%5C%5C%20%5Ccfrac%7B%5Ctextit%7Bsimilar%20shape%7D%7D%7B%5Ctextit%7Bsimilar%20shape%7D%7D%26%5Ccfrac%7Bs%7D%7Bs%7D%26%5Ccfrac%7Bs%5E2%7D%7Bs%5E2%7D%26%5Ccfrac%7Bs%5E3%7D%7Bs%5E3%7D%20%5Cend%7Barray%7D%5C%5C%5C%5C%20%5Crule%7B31em%7D%7B0.25pt%7D%5C%5C%5C%5C%20%5Ccfrac%7B%5Ctextit%7Bsimilar%20shape%7D%7D%7B%5Ctextit%7Bsimilar%20shape%7D%7D%5Cqquad%20%5Ccfrac%7Bs%7D%7Bs%7D%3D%5Ccfrac%7B%5Csqrt%7Bs%5E2%7D%7D%7B%5Csqrt%7Bs%5E2%7D%7D%3D%5Ccfrac%7B%5Csqrt%5B3%5D%7Bs%5E3%7D%7D%7B%5Csqrt%5B3%5D%7Bs%5E3%7D%7D%20)
![\bf \rule{31em}{0.25pt}\\\\ \cfrac{smaller}{larger}\qquad \cfrac{s}{s}=\cfrac{\sqrt{98}}{\sqrt{162}}~~ \begin{cases} 98=2\cdot 7\cdot 7\\ \qquad 2\cdot 7^2\\ 162=2\cdot 9\cdot 9\\ \qquad 2\cdot 9^2 \end{cases}\implies \cfrac{s}{s}=\cfrac{\sqrt{2\cdot 7^2}}{\sqrt{2\cdot 9^2}} \\[2em] \cfrac{s}{s}=\cfrac{7\sqrt{2}}{9\sqrt{2}}\implies \cfrac{s}{s}=\cfrac{7}{9}](https://tex.z-dn.net/?f=%20%5Cbf%20%5Crule%7B31em%7D%7B0.25pt%7D%5C%5C%5C%5C%20%5Ccfrac%7Bsmaller%7D%7Blarger%7D%5Cqquad%20%5Ccfrac%7Bs%7D%7Bs%7D%3D%5Ccfrac%7B%5Csqrt%7B98%7D%7D%7B%5Csqrt%7B162%7D%7D~~%20%5Cbegin%7Bcases%7D%2098%3D2%5Ccdot%207%5Ccdot%207%5C%5C%20%5Cqquad%202%5Ccdot%207%5E2%5C%5C%20162%3D2%5Ccdot%209%5Ccdot%209%5C%5C%20%5Cqquad%202%5Ccdot%209%5E2%20%5Cend%7Bcases%7D%5Cimplies%20%5Ccfrac%7Bs%7D%7Bs%7D%3D%5Ccfrac%7B%5Csqrt%7B2%5Ccdot%207%5E2%7D%7D%7B%5Csqrt%7B2%5Ccdot%209%5E2%7D%7D%20%5C%5C%5B2em%5D%20%5Ccfrac%7Bs%7D%7Bs%7D%3D%5Ccfrac%7B7%5Csqrt%7B2%7D%7D%7B9%5Csqrt%7B2%7D%7D%5Cimplies%20%5Ccfrac%7Bs%7D%7Bs%7D%3D%5Ccfrac%7B7%7D%7B9%7D%20)
bearing in mind that the ratio of the sides, is the same as the ratio of the perimeters.
Answer:
1:2
Step-by-step explanation:
You didn't really specify, but I'm going to assume you meant as simplified as possible. If you write it as a fraction, it will be ½ or as a decimal it will be 0.5.
Answer:
C
Step-by-step explanation:
0.25 X 8 is 2.00
2.00 - 0.25 is 1.75
Answer:
5¹⁴
Step-by-step explanation:
Exponent Rule: 
(5²)⁷
m = 2
n = 7
2(7) = 14
5¹⁴
Answer:
I have tried but I can't sorry friend