Answer:
α = 141.5° (counterclockwise)
Explanation:
If
q₁ = +q
q₂ = -q
q₃ < 0
b = 2*a
We apply Coulomb's Law as follows
F₁₃ = K*q₁*q₃ / d₁₃² = + K*q*q₃ / (2*a)² = + K*q*q₃ / (4*a²)
F₂₃ = K*q₂*q₃ / d₂₃² = - K*q*q₃ / (5*a²)
(d₂₃² = a² + (2a)² = 5*a²)
Then
∅ = tan⁻¹(2a/a) = tan⁻¹(2) = 63.435°
we apply
F₃x = - F₂₃*Cos ∅ = - (K*q*q₃ / (5*a²))* Cos 63.435°
⇒ F₃x = - 0.0894*K*q*q₃ / a²
F₃y = - F₂₃*Sin ∅ + F₁₃
⇒ F₃y = - (K*q*q₃ / (5*a²))* Sin 63.435° + (K*q*q₃ / (4*a²))
⇒ F₃y = 0.0711*K*q*q₃ / a²
Now, we use the formula
α = tan⁻¹(F₃y / F₃x)
⇒ α = tan⁻¹((0.0711*K*q*q₃ / a²) / (- 0.0894*K*q*q₃ / a²)) = - 38.5°
The real angle is
α = 180° - 38.5° = 141.5° (counterclockwise)
Answer:
The answer is b, friction.
Explanation:
Let's say you're riding your roller skates on the sidewalk. The surface of the sidewalk rubs against your skates, counteracting your movement while you proceed in the opposite direction that the sidewalk is counteracting. The force that causes that is friction.
Answer
given,
Q u = 8.7 m³/s
Q d= 0.9 m³/s
BOD concentration = 50 mg/L
a) BOD concentration at the down stream


= 4.69 mg/L
b) discharge = 9.6 m³/s
cross sectional area = 10 m²
velocity steam = 
= 0.96 m/s
time taken to move 50 km down stream =
= 52083.3 s
= 
= 0.6 days
now,



Answer:
Explanation:
An object can store energy as the result of its position. For example, the heavy ball of a demolition machine is storing energy when it is held at an elevated position. This stored energy of position is referred to as potential energy. Similarly, a drawn bow is able to store energy as the result of its position. When assuming its usual position (i.e., when not drawn), there is no energy stored in the bow. Yet when its position is altered from its usual equilibrium position, the bow is able to store energy by virtue of its position. This stored energy of position is referred to as potential energy. Potential energy is the stored energy of position possessed by an object.