Ah ha ! Very interesting question.
Thought-provoking, even.
You have something that weighs 1 Newton, and you want to know
the situation in which the object would have the greatest mass.
Weight = (mass) x (local gravity)
Mass = (weight) / (local gravity)
Mass = (1 Newton) / (local gravity)
"Local gravity" is the denominator of the fraction, so the fraction
has its greatest value when 'local gravity' is smallest. This is the
clue that gives it away.
If somebody offers you 1 chunk of gold that weighs 1 Newton,
you say to him:
"Fine ! Great ! Golly gee, that's sure generous of you.
But before you start weighing the chunk to give me, I want you
to take your gold and your scale to Pluto, and weigh my chunk
there. And if you don't mind, be quick about it."
The local acceleration of gravity on Pluto is 0.62 m/s² ,
but on Earth, it's 9.81 m/s.
So if he weighs 1 Newton of gold for you on Pluto, its mass will be
1.613 kilograms, and it'll weigh 15.82 Newtons here on Earth.
That's almost 3.6 pounds of gold, worth over $57,000 !
It would be even better if you could convince him to weigh it on
Halley's Comet, or on any asteroid. Wherever he's willing to go
that has the smallest gravity. That's the place where the largest
mass weighs 1 Newton.
An impulsive force is a force that is acting only during a short time, I mean, for an instant. Impulse is a physics magnitude define by the product of the impulsive force and the time that it was acting.
Is there any mistake in my English? Please, let me know.
Answer:
A) some of the rocks energy is transformed to thermal energy
Explanation:
If we neglect air resistance during the fall of the rock, than the mechanical energy of the rock (which is sum of its potential energy and its kinetic energy) would be constant during the entire motion, so the total energy of the rock at the top would be the same as the sum of its potential energy and kinetic energy at the bottom.
However, this not occurs, due to the presence of air resistance. In fact, air resistance acts against the fall of the rock, and because of the friction between the molecules of air and the surface of the rock, the rock loses part of its energy. This energy is converted into thermal energy of the molecules of the air.