The balance of forces allows to find the result for the question if the isotope of boron 9.99 una is stable:
-
The boron isotope of mass 9.99 uma is unstable because the repulsive force increases.
The stability of atomic nuclei depends on the balance the force is electrostatic repulsion between the protons and the strong interaction of attraction.
One way to achieve this balance is to increase the separation of the protons with uncharged particles between them, the neutral ones, the strong interaction is of the same magnitude for protons and neutrons, therefore the repulsion is decreased and the strong attraction interaction is maintained. .
In the case of Boron, which has 5 protons, the stable structures have more atomistic 10 and 11 una, which is why it has 5 and 6 neutrons each. Therefore each proton has a neutrons next to it and in the other case a proton at the end has two neutrons, this causes the distance between the protons to increase, decreasing the electrostatic repulsion.
It indicates that we have a Boron nucleus of mass 9.999. The number of protons must remain fixed, therefore there are only 4 neutrons.
Consequently, some of the protons does not have a neutron next to it and can approach the other proton, therefore the electrostatic repulsion increases and the stability of the atom decreases.
In conclusion, using the balance of Forces we can find the result for the question if the isotope of boron 9.99 una is stable:
-
The boron isotope of mass 9.99 amu is unstable because the repulsive force increases.
Learn more about nuclear stability here: brainly.com/question/897383
To determine the mass of CO₂, the following must be known :
- the molar mass of CaCO₃
- the mole ratio of CaCO₃ to CO₂
- the molar mass of CO₂
<h3>Further explanation</h3>
Reaction
Decomposition of CaCO₃
CaCO₃ ⇒ CaO + CO₂
Given the mass of CaCO₃, so to determine the mass of CO₂ :
1. Find the mol of CaCO₃ from the molar mass of CaCO₃

2. Find the mole ratio of CaCO₃ : CO₂(from equation = 1 : 1)

3. Find the mass of CO₂ from the molar mass of CO₂

It's just H20 but with 3 water molecules
Answer:
The equilibrium will move in forward direction.
Explanation:
Any change in the equilibrium is studied on the basis of Le-Chatelier's principle.
This principle states that if there is any change in the variables of the reaction, the equilibrium will shift in the direction to minimize the effect.

On addition of base at the equilibrium, the hydroxide ions of the base will neutralize the hydrogen ions and lowering in concentration of hydrogen ion will be observed.
So, on lowering of concentration of hydrogen ions the equilibrium will move in direction in accordance to Le Chatelier’s Principle .The equilibrium will move in forward direction.
I believe the answer is A. im not to sure though hoped this helped!