values of the quantum numbers: -6,-5,-4,-3,-2,-1,0,1,2,3,4,5,6
location of the electron: In the 7th energy level away from the nucleus.
Explanation:
From the description of the problem, the magnetic number is given is as -6,-5,-4,-3,-2,-1,0,1,2,3,4,5,6 and the electron is located in the 7th energy level away from the nucleus. Basically, the problem is testing for the understanding of the principal quantum numbers which gives the location of electrons and the magnetic quantum number that shows the spatial orientation of the orbitals.
The orbital designation of the describe electron is 7d
- Magnetic quantum number is limited by the azimuthal quantum number which is the quantum number describing the possible shapes. The azimuthal is given as L= n-1. "n" is the principal quantum number which is 7. Therefore L is 6 and the magnetic quantum numbers are -6,-5,-4,-3,-2,-1,0,1,2,3,4,5,6
- The position of the electron is given by the principal quantum number which represents the main energy level in which the orbital is located or the average distance from the nucleus. Here it is 7.
Learn more:
brainly.com/question/9288609
#learnwithBrainly
Best Answer
C) is the best description, although a scientific theory is not necessarily a "fact". They are, however, based on evidence.
A) is complete garbage.
B) is a good description of a scientific "law"- something that predicts how a certain event will occur without explaining why this is (for instance, the law of gravity accurately describes the gravitational forces between two bodies, but does not explain why these forces are there).
D) is a scientific "hypothesis"- an explanation for an observed phenomena that is yet to be proven.
Answer:
a) K2[Ni(CN)4]
b) Na3[Ru(NH3)2(CO3)2]
c) Pt(NH3)2Cl2
Explanation:
Coordination compounds are named in accordance with IUPAC nomenclature.
According to this nomenclature, negative ligands end with the suffix ''ato'' while neutral ligands have no special ending.
The ions written outside the coordination sphere are counter ions. Given the names of the coordination compounds as written in the question, their formulas are provided above.
Answer:
mass of CO = 210.42 g
mass in three significant figures = 210. g
Explanation:
Given data:
mass of Fe2O3 = 0.400 Kg
mass of CO= ?
Solution:
chemical equation:
Fe2O3 + 3CO → 2Fe + 3CO2
Now we will calculate the molar mass of Fe2O3 and CO.
Molar mass of Fe2O3 = (55.845 × 2) + (16 × 3) = 159.69 g/mol
Molar mass of CO = 12+ 16 = 28 g/mol
now we will convert the kg of Fe2O3 in g.
mass of Fe2O3 = 0.400 kg × 1000 = 400 g
number of moles of Fe2O3 = 400 g/ 159.69 g/mol = 2.505 mol
mass of CO = moles of Fe2O3 × 3( molar mass of CO)
mass of CO = 2.505 mol × 84 g/mol
mass of CO = 210.42 g
mass in three significant figures = 210. g
Any element in group 18 has eight valence electrons (except for helium, which has a total of just two electrons). Examples include neon (Ne), argon (Ar), and krypton (Kr). Oxygen, like all the other elements in group 16, has six valence electrons.