The values of x at wich F(x) has local minimums are x = -2 and x = 4, and the local minimums are:
<h3>
What is a local maximum/minimum?</h3>
A local maximum is a point on the graph of the function, such that in a close vicinity it is the maximum value there. So, on an interval (a, b) a local maximum would be F(c) such that:
c ∈ (a, b)
F(c) ≥ F(x) for ∀ x ∈ [a, b]
A local minimum is kinda the same, but it must meet the condition:
c ∈ (a, b)
F(c) ≤ F(x) for ∀ x ∈ [a, b]
A) We can see two local minimums, we need to identify at which values of x do they happen.
The first local minimum happens at x = -2
The second local minimum happens at x = 4.
B) The local minimums are given by F(-2) and F(4), in this case, the local minimums are:
If you want to learn more about minimums/maximums, you can read:
brainly.com/question/2118500
Answer:
B.
Step-by-step explanation:
Answer:
The correct options are;
1) Write tan(x + y) as sin(x + y) over cos(x + y)
2) Use the sum identity for sine to rewrite the numerator
3) Use the sum identity for cosine to rewrite the denominator
4) Divide both the numerator and denominator by cos(x)·cos(y)
5) Simplify fractions by dividing out common factors or using the tangent quotient identity
Step-by-step explanation:
Given that the required identity is Tangent (x + y) = (tangent (x) + tangent (y))/(1 - tangent(x) × tangent (y)), we have;
tan(x + y) = sin(x + y)/(cos(x + y))
sin(x + y)/(cos(x + y)) = (Sin(x)·cos(y) + cos(x)·sin(y))/(cos(x)·cos(y) - sin(x)·sin(y))
(Sin(x)·cos(y) + cos(x)·sin(y))/(cos(x)·cos(y) - sin(x)·sin(y)) = (Sin(x)·cos(y) + cos(x)·sin(y))/(cos(x)·cos(y))/(cos(x)·cos(y) - sin(x)·sin(y))/(cos(x)·cos(y))
(Sin(x)·cos(y) + cos(x)·sin(y))/(cos(x)·cos(y))/(cos(x)·cos(y) - sin(x)·sin(y))/(cos(x)·cos(y)) = (tan(x) + tan(y))(1 - tan(x)·tan(y)
∴ tan(x + y) = (tan(x) + tan(y))(1 - tan(x)·tan(y)
F(-5) is 23-D
Line change is B
10/10 = 1
There is no decimal form unless you do 1.0, 1.00, 1.000, and so on.