Answer: number one makes the most sense to me let me know if it’s right!
Explanation:
c) Current cannot flow
Reason: Because the switch is not closed.
T = final temperature of the block
T₀ = initial temperature of the block = 23.4 °C
Q = energy lost from the wooden block = - 759 J
c = specific heat capacity of wood = 1.716 J/(g °C)
m = mass of the wooden block = 27.2 g
Heat lost from the block is given as
Q = m c (T - T₀)
inserting the values
- 759 = (27.2) (1.716) (T - 23.4)
T = 7.1 °C
Hybridization refers to the mixing of atomic orbitals in an atom. The number of hybrid orbitals needs to be equal to the number of orbitals that have involved in prior to mixing.
The isolated atoms cannot prevail in a hybridized state as the atom in an isolated state do not form any kind of bond with the other atom, due to which the atomic orbitals do not go through the process of hybridization.
Answer- 400 grams of AlCl3 is the maximum amount of AlCl3 produced during the experiment.
Given - Number of moles of Al(NO3)3 - 4 moles
Number of moles of NaCl - 9 moles
Find - Maximum amount of AlCl3 produced during the reaction.
Solution - The complete reaction is - Al(NO3)3 + 3NaCl --> 3NaNO3 + AlCl3
To find the maximum amount of AlCl3 produced during the reaction, we need to find the limiting reagent.
Mole ratio Al(NO3)3 - 4/1 - 4
Mole ratio NaCl - 9/3 - 3
Thus, NaCl is the limiting reagent in the reaction.
Now, 3 moles of NaCl produces 1 mole of AlCl3
9 moles of NaCl will produce - 1/3*9 - 3 moles.
Weight of AlCl3 - 3*133.34 - 400 grams
Thus, 400 grams of AlCl3 is the maximum amount of AlCl3 produced during the experiment.