Answer:
true
Explanation:
Because ice melts if the temperature increasese
I think it is 1620 (lxwxh) x 10 to get to millimeters
Answer:
Hydrogen H₂ will be the limiting reagent.
The excess reactant that will be left after the reaction is 3.45 moles.
4.3 moles of water can be produced.
Explanation:
The balanced reation is:
2 H₂ + O₂ → 2 H₂O
By reaction stoichiometry (that is, the relationship between the amount of reagents and products in a chemical reaction), the following amounts of each compound participate in the reaction:
- H₂: 2 moles
- O₂: 1 mole
- H₂O: 2 moles
To determine the limiting reagent, you can use a simple rule of three as follows: if by stoichiometry 1 mole of O₂ reacts with 2 moles of H₂, how much moles of H₂ will be needed if 5.6 moles of O₂ react?

moles of H₂= 11.2 moles
But 11.2 moles of H₂ are not available, 4.3 moles are available. Since you have less moles than you need to react with 5.6 moles of O₂, <u><em>hydrogen H₂ will be the limiting reagent</em></u> and oxygen O₂ will be the excess reagent.
Then you can apply the following rules of three:
- If by reaction stoichiometry 2 moles of H₂ react with 1 mole of O₂, 4.3 moles of H₂ will react with how many moles of O₂?

moles of O₂= 2.15 moles
The excess reactant that will be left after the reaction can be calculated as:
5.6 moles - 2.15 moles= 3.45 moles
<u><em>The excess reactant that will be left after the reaction is 3.45 moles.</em></u>
- If by reaction stoichiometry 2 moles of H₂ produce 2 moles of H₂O, 4.3 moles of H₂ produce how many moles of H₂O?

moles of H₂O= 4.3 moles
<u><em>4.3 moles of water can be produced.</em></u>
Answer:
K = 3.37
Explanation:
2 NH₃(g) → N₂(g) + 3H₂(g)
Initially we have 4 mol of ammonia, and in equilibrium we have 2 moles, so we have to think, that 2 moles have been reacted (4-2).
2 NH₃(g) → N₂(g) + 3H₂(g)
Initally 4moles - -
React 2moles 2m + 3m
Eq 2 moles 2m 3m
We had produced 2 moles of nitrogen and 3 mol of H₂ (ratio is 2:3)
The expression for K is: ( [H₂]³ . [N₂] ) / [NH₃]²
We have to divide the concentration /2L, cause we need MOLARITY to calculate K (mol/L)
K = ( (2m/2L) . (3m/2L)³ ) / (2m/2L)²
K = 27/8 / 1 → 3.37
Answer:

Explanation:
Hello!
In this case, since the molarity of a solution is computed by dividing the moles of solute by the volume of solution in liters, we first need to compute the moles of solute knowing that the molar mass of calcium hydroxide is 74.1 g/mol as follows:

Next, since the 100-mL solution is also expressed in liters by 0.100 L, we directly compute the molarity as shown below:

Which is expressed in molar units that are mol/L.
Best regards!