Answer:
Hydrogen: -141 kJ/g
Methane: -55kJ/g
The energy released per gram of hydrogen in its combustion is higher than the energy released per gram of methane in its combustion.
Explanation:
According to the law of conservation of the energy, the sum of the heat released by the combustion and the heat absorbed by the bomb calorimeter is zero.
Qc + Qb = 0
Qc = -Qb [1]
We can calculate the heat absorbed by the bomb calorimeter using the following expression.
Q = C . ΔT
where,
C is the heat capacity
ΔT is the change in the temperature
<h3>Hydrogen</h3>
Qc = -Qb = -C . ΔT = -(11.3 kJ/°C) . (14.3°C) = -162 kJ
The heat released per gram of hydrogen is:

<h3>Methane</h3>
Qc = -Qb = -C . ΔT = -(11.3 kJ/°C) . (7.3°C) = -82 kJ
The heat released per gram of methane is:

Answer:
The advantage of this technique is that purified water as well as deposited metals can be re-used. It is necessary to use an inert electrode, such as platinum, because there is no metal present to conduct the electrons from the anode to the cathode.
The answer which would have been a major difference in the ocean basins is the following one:
<span>B. Mid-ocean ridges would have been chains of mountains.
Given that the waters were lower in the past, those ridges would no longer be just mid-ocean ridges, but complete mountains due to the low levels of water around them.</span>
Answer:
The nucleus consists of 25 protons (red) and 30 neutrons (blue). 25 electrons (green) bind to the nucleus, successively occupying available electron shells (rings). Manganese is a transition metal in group 7, period 4, and the d-block of the periodic table. It has a melting point of 1246 degrees Celsius.