Answer:
Explanation:
Structure of the 2,2,4,4-tetramethyl-3-pentanone is give in the attachment
In 2,2,4,4-tetramethyl-3-pentanone, no alpha hydrogen is present, therefore, enol form is not possible and hence, exist only in keto form.
Explanation for existence of cyclohexa-2,4-diene-1-one only in enol form:
keto form of cyclohexa-2,4-diene-1-one not aromatic and hence less stable.
Whereas enol form it is aromatic which makes it highly stable. that's why cyclohexa-2,4-diene-1-one exists only in enol form.
Answer:
39.1 °C
Explanation:
Recall the equation for specific heat:

Where q is the heat, m is the mass, c is the specific heat of the substance (in this case water), and delta T is the change in temperature.
You should know that the specific heat of water is 1 cal/g/C.
Using the information in the question:

The final temperature is about 39.1 °C.
Answer:
Pb is the substance that experiments the greatest temperature change.
Explanation:
The specific heat capacity refers to the amount of heat energy required to raise in 1 degree the temperature of 1 gram of substance. The highest the heat capacity, the more energy it would be required. These variables are related through the equation:
Q = c . m . ΔT
where,
Q is the amount of heat energy provided (J)
c is the specific heat capacity (J/g.°C)
m is the mass of the substance
ΔT is the change in temperature
Since the question is about the change in temperature, we can rearrange the equation like this:

All the substances in the options have the same mass (m=10.0g) and absorb the same amount of heat (Q=100.0J), so the change in temperature depends only on the specific heat capacity. We can see in the last equation that they are inversely proportional; the lower c, the greater ΔT. Since we are looking for the greatest temperature change, It must be the one with the lowest c, namely, Pb with c = 0.128 J/g°C. This makes sense because Pb is a metal and therefore a good conductor of heat.
Its change in temperature is:

The symbol for copper is CU, which means copper cuprum, the Latin word for copper.