Answer:
that initially the weather vane was at rest, by this load that remained on the pole it would begin to move.
Explanation:
Let us carefully analyze the situation, when the bar is facing the index post a load of equal magnitude, but opposite sign on its surface, these two charges are in balance; When the hand touches the pole, it creates a path to the ground where the charges that were induced on the pole can be balanced with the charge coming from the ground, leaving a zero charge on the pole.
Now if the hand is removed, there can be no exchange of charges with the earth. When the bar is removed, the induced loads are redistributed in the post, but the excess loads that came from the earth that have the same value and are of a sign opposite to the induced ones remain, you want to sign that they are of the same sign as the charges of the bar.
In summary, after the process, the post has a load of equal magnitude and sign (negative) that of the bar.
If we assume that initially the weather vane was at rest, by this load that remained on the pole it would begin to move.
Answer:
in water its more slower because of the liquid matter but in air its a gas formaiton so its more quicker
Explanation:
Answer:
Transverse
Explanation:
Electromagnetic waves don't depend on the medium they travel through like a mechanical wave does, so they aren't mechanical. They don't oscillate (move back in forth) in the direction they travel either, ruling out compressional and longitudinal waves.
That leaves tranverse waves, the ones we're most used to, since they look very "wavelike," with smooth peaks and valleys. Electromagnic waves behave like these, oscillating in a plane perpendicular to the direction they're traveling in.
1250 J in 5 sec= 250 Joule(s) per second (1250/5 0
250 Joules per second = 250 Watts ( 1J/s = 1 Watt per definition)
250 Watts output = 250/0.65 efficiency = 384 Watts input
1 Horsepower = 732 Watts
Motors 1 Horsepower and under are made in certain step sizes like
3/4 , 1/2 , 1/3, 1/4, 1/16 1/20 of a Horsepower.
3/4 Horsepower is 549 Watts
1/2 Horsepower is 366 Watts
so you need to 3/4 horsepower motor to achieve 1250 J of work in 5 seconds.