1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Norma-Jean [14]
3 years ago
5

A current of 3.75 A in a long, straight wire produces a magnetic field of 2.61 μT at a certain distance from the wire. Find thi

s distance.
Physics
1 answer:
Bad White [126]3 years ago
5 0

Given :

Current, I = 3.75 A .

Magnetic Field, B = 2.61\times 10^{-4}\ T

To Find :

The distance from the wire.

Solution :

We know,

B = K\dfrac{2i}{d}\\\\d = 10^{-7}\times \dfrac{2\times 3.75}{2.61\times 10^{-4}}\\\\d =  0.00287\ m \\\\d = 2.87\times 10^{-3}\ m

Hence, this is the required solution.

You might be interested in
If the coefficient of friction is 0.3900 and the cylinder has a radius of 2.700 m, what is the minimum angular speed of the cyli
Aleks04 [339]

Answer:

w=3.05 rad/s or 29.88rpm

Explanation:

k = coefficient of friction = 0.3900

R = radius of the cylinder = 2.7m

V = linear speed of rotation of the cylinder

w = angular speed = V/R or to rewrite V = w*R

N = normal force to cylinder

N==\frac{m(V)^{2}}{R}=m*(w)^2*R

Friction force\\Ff = k*N\\Ff= k*m*w^2*R

Gravitational force \\Fg = m*g

These must be balanced (the net force on the people will be 0) so set them equal to each other.

Fg = Ff

m*g = k*m*w^2*R

g=k*w^{2}*R

w^2 =\frac{g}{k*R}

w=\sqrt{\frac{g}{k*R}} \\w =\sqrt{\frac{9.8\frac{m}{s^{2}}}{0.3900*2.7m}}\\ w=\sqrt{9.306}=3.05 \frac{rad}{s}

There are 2*pi radians in 1 revolution so:

RPM=\frac{w}{2\pi }*60\\RPM=\frac{3.05\frac{rad}{s}}{2\pi}*60\\RPM= 0.498*60\\RPM=29.88

So you need about 30 RPM to keep people from falling out the bottom

7 0
4 years ago
What change in entropy occurs when a 0.15 kg ice cube at -18 °C is transformed into steam at 120 °c 4.
Studentka2010 [4]

<u>Answer:</u> The change in entropy of the given process is 1324.8 J/K

<u>Explanation:</u>

The processes involved in the given problem are:

1.)H_2O(s)(-18^oC,255K)\rightarrow H_2O(s)(0^oC,273K)\\2.)H_2O(s)(0^oC,273K)\rightarrow H_2O(l)(0^oC,273K)\\3.)H_2O(l)(0^oC,273K)\rightarrow H_2O(l)(100^oC,373K)\\4.)H_2O(l)(100^oC,373K)\rightarrow H_2O(g)(100^oC,373K)\\5.)H_2O(g)(100^oC,373K)\rightarrow H_2O(g)(120^oC,393K)

Pressure is taken as constant.

To calculate the entropy change for same phase at different temperature, we use the equation:

\Delta S=m\times C_{p,m}\times \ln (\frac{T_2}{T_1})      .......(1)

where,

\Delta S = Entropy change

C_{p,m} = specific heat capacity of medium

m = mass of ice = 0.15 kg = 150 g    (Conversion factor: 1 kg = 1000 g)

T_2 = final temperature

T_1 = initial temperature

To calculate the entropy change for different phase at same temperature, we use the equation:

\Delta S=m\times \frac{\Delta H_{f,v}}{T}      .......(2)

where,

\Delta S = Entropy change

m = mass of ice

\Delta H_{f,v} = enthalpy of fusion of vaporization

T = temperature of the system

Calculating the entropy change for each process:

  • <u>For process 1:</u>

We are given:

m=150g\\C_{p,s}=2.06J/gK\\T_1=255K\\T_2=273K

Putting values in equation 1, we get:

\Delta S_1=150g\times 2.06J/g.K\times \ln(\frac{273K}{255K})\\\\\Delta S_1=21.1J/K

  • <u>For process 2:</u>

We are given:

m=150g\\\Delta H_{fusion}=334.16J/g\\T=273K

Putting values in equation 2, we get:

\Delta S_2=\frac{150g\times 334.16J/g}{273K}\\\\\Delta S_2=183.6J/K

  • <u>For process 3:</u>

We are given:

m=150g\\C_{p,l}=4.184J/gK\\T_1=273K\\T_2=373K

Putting values in equation 1, we get:

\Delta S_3=150g\times 4.184J/g.K\times \ln(\frac{373K}{273K})\\\\\Delta S_3=195.9J/K

  • <u>For process 4:</u>

We are given:

m=150g\\\Delta H_{vaporization}=2259J/g\\T=373K

Putting values in equation 2, we get:

\Delta S_2=\frac{150g\times 2259J/g}{373K}\\\\\Delta S_2=908.4J/K

  • <u>For process 5:</u>

We are given:

m=150g\\C_{p,g}=2.02J/gK\\T_1=373K\\T_2=393K

Putting values in equation 1, we get:

\Delta S_5=150g\times 2.02J/g.K\times \ln(\frac{393K}{373K})\\\\\Delta S_5=15.8J/K

Total entropy change for the process = \Delta S_1+\Delta S_2+\Delta S_3+\Delta S_4+\Delta S_5

Total entropy change for the process = [21.1+183.6+195.9+908.4+15.8]J/K=1324.8J/K

Hence, the change in entropy of the given process is 1324.8 J/K

4 0
3 years ago
You lift a large bag of flour from the floor to a 2.5m high counter, doing 400J of work in 2 seconds. How much force did you app
oksian1 [2.3K]
<h2>The man have to apply force of 160 N</h2>

Explanation:

The work done to lift the bag of weight mg through height 2.5 m is 400 J

The work done can be found by relation  W = mg x h

Thus mg = \frac{W}{h} = \frac{400}{2.5} =  160 N

Therefore the man have to apply the force of 160 N

7 0
3 years ago
Read 2 more answers
There is a puncture in the inner tor of your bicycle. Give a method to detect the position of the puncture
Pani-rosa [81]

Answer:

Explanation:

The first method to engage is to listen to where the sound of air in the inner Tor escaping originated and look to see if u can find it. You can then feel the escape air with your hand.

You can Put it inside a container of water and see the bubble and rotate the inner tube to pass all of it through the water

7 0
3 years ago
What likely happens to the hart rate as the cardiac mucle gets stronger
Kaylis [27]
The heart rate will likely decrease. As the cardiac muscle, or heart, gets stronger, it takes less effort to pump more blood. As a result, the heart will probably beat less, decreasing the heart rate. This is why athletes often have lower heart rates than the average person.
5 0
3 years ago
Other questions:
  • Which waves move by replacing one particle with another
    11·2 answers
  • A wire carrying a 32.0 A current passes between the poles of a strong magnet such that the wire is perpendicular to the magnet's
    15·1 answer
  • Nerve cells transmit electric signals through their long tubular axons. These signals propagate due to a sudden rush of Na+ ions
    5·1 answer
  • A) Julie is running to the right at 5 m/s, as shown in the 1st figure. Balls 1 and 2 are thrown toward her at 10 m/s by friends
    11·1 answer
  • ¿Cómo explicas que las ondas transfieren energía de un lugar a otro sin transferir materia?
    8·1 answer
  • Uses of convace, convex mirror​
    13·1 answer
  • The pressure at the bottom of a cylindrical container with a cross-sectional area of 45.5 cm2 and holding a fluid of density 420
    8·1 answer
  • If you throw a ball up with a velocity of 7 m/s, how long will it take for the ball to reach
    6·1 answer
  • To understand the behavior of the electric field at the surface of a conductor, and its relationship to surface charge on the co
    14·1 answer
  • How to live a life like scientists​
    12·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!