Answer:
True
Explanation:
Magnitude is the "value" the greater the value the greater the force is and vice versa
Answer:
v = 12.4 [m/s]
Explanation:
With the speed and Area information, we can determine the volumetric flow.

where:
r = radius = 0.0120 [m]
v = 2.88 [m/s]
![A=\pi *(0.0120)^{2} \\A=4.523*10^{-4} [m]\\](https://tex.z-dn.net/?f=A%3D%5Cpi%20%2A%280.0120%29%5E%7B2%7D%20%5C%5CA%3D4.523%2A10%5E%7B-4%7D%20%5Bm%5D%5C%5C)
Therefore the flow is:
![V=2.88*4.523*10^{-4} \\V=1.302*10^{-3} [m^{3}/s ]](https://tex.z-dn.net/?f=V%3D2.88%2A4.523%2A10%5E%7B-4%7D%20%5C%5CV%3D1.302%2A10%5E%7B-3%7D%20%5Bm%5E%7B3%7D%2Fs%20%5D)
Despite the fact that you cover the inlet with the finger, the volumetric flow rate is the same.
![v=V/A\\v=1.302*10^{-3} /1.05*10^{-4} \\v=12.4[m/s]](https://tex.z-dn.net/?f=v%3DV%2FA%5C%5Cv%3D1.302%2A10%5E%7B-3%7D%20%2F1.05%2A10%5E%7B-4%7D%20%5C%5Cv%3D12.4%5Bm%2Fs%5D)
Answer:
The velocity of the other fragment immediately following the explosion is v .
Explanation:
Given :
Mass of original shell , m .
Velocity of shell , + v .
Now , the particle explodes into two half parts , i.e
.
Since , no eternal force is applied in the particle .
Therefore , its momentum will be conserved .
So , Final momentum = Initial momentum

The velocity of the other fragment immediately following the explosion is v .
Answer:

Explanation:
Given that
For straight wire
Charge density= λ
For hollow metal cylinder
Charge density=2 λ
We know that electric filed for wire given as


Now the electric filed due to hollow metal cylinder


Now by considering the Gaussian surface r<R then only electric fild due to wire will present.So
At r<R
