It would be A because it would make sense
Answer:
(A). The order of the bright fringe is 6.
(B). The width of the bright fringe is 3.33 μm.
Explanation:
Given that,
Fringe width d = 0.5 mm
Wavelength = 589 nm
Distance of screen and slit D = 1.5 m
Distance of bright fringe y = 1 cm
(A) We need to calculate the order of the bright fringe
Using formula of wavelength


Put the value into the formula


(B). We need to calculate the width of the bright fringe
Using formula of width of fringe

Put the value in to the formula



Hence, (A). The order of the bright fringe is 6.
(B). The width of the bright fringe is 3.33 μm.
Answer:
Vector quantities are important in the study of motion. Some examples of vector quantities include force, velocity, acceleration, displacement, and momentum. The difference between a scalar and vector is that a vector quantity has a direction and a magnitude, while a scalar has only a magnitude. Vector, in physics, a quantity that has both magnitude and direction. It is typically represented by an arrow whose direction is the same as that of the quantity and whose length is proportional to the quantity's magnitude. A quantity which does not depend on direction is called a scalar quantity. Vector quantities have two characteristics, a magnitude and a direction. The resulting motion of the aircraft in terms of displacement, velocity, and acceleration are also vector quantities. A vector quantity is different to a scalar quantity because a quantity that has magnitude but no particular direction is described as scalar. A quantity that has magnitude and acts in a particular direction is described as vector.
Explanation:
Answer:
2.78 m
Explanation:
At the peak, the velocity is 0.
Given:
a = -1.6 m/s²
v₀ = 2.98 m/s
v = 0 m/s
x₀ = 0 m
Find:
x
v² = v₀² + 2a(x - x₀)
(0 m/s)² = (2.98 m/s)² + 2(-1.6 m/s²) (x - 0 m)
x = 2.775 m
Rounded to 3 sig-figs, the astronaut halloweener reaches a maximum height of 2.78 meters.