Answer:
The items here are describing either a condition in a later interacton or a protogalactic cloud. The results matching with spiral and elliptical galaxy are:
For spiral galaxy are options 6,3,2 and 5.
and for elliptical galaxy are options 4 and 1.
Explanation:
Here it is given that astrnomers suspect that types of galaxy can be affected both by the conditions which occurs due to protogalactic cloud and then from it forms the initial conditions and then by the later interactions with the other galaxies.
so, both types of galaxies are matched with their respective items given:
A. Spiral galaxy:
2. A galaxy collision results tostripping of gas.
3. The protogalactic cloud rotates in a very slow motion.
5. The density of protogalactic cloud is very high.
6. when the protogalactic cloud shrinks cloud forms very rapidly.
B. Elliptical galaxy:
1. The protogalactic cloud has high angular momentum.
4. Most of the protogalactic gases settles down into a disk.
Answer:
136 meters.
Explanation: If it can go 17 meters a second, then after 8 seconds, it will go 136 meters. Multiple 17 by 8 to get your answer.
D.) 5kg
This is a trick question. The mass of an object does not change based in location. However the weight of an object does change, this is because Weight = Mass × Gravity. Also mass is measured in kilograms and so the answer is 5 kg. So if you ever want to lose weight just go to the moon!
Answer:
21.7 seconds.
Explanation:
Woman's velocity relative to train (23 m/s - 22.4 m/s) = 0.6 m/s
Distance woman wants to travel = 13m
To find how long she will take to move 13m relative to the train, take the distance she wants to travel divided by her velocity relative to the train.
(13m)/(0.6 m/s) = 21.6667 seconds or 21.7 seconds.
Therefore, it will take the woman 21.7 seconds to move 13m.
<span>The magnitude of the gravitational force between two bodies is the product of their masses divided by the square of the distance between them. So we have F = M1*M2 / r^2. M1 = 7.503 * 10e24 and M2 = 2.703 * 10e22 and r= 2.803 * 10e8; r^2 = 5.606 *10e16. So we have 7.503 *2.703 *10^(24+22) = 20.280 * 10^(46). Then we divide our answer by 5.606 * 10e16 which is the distance ; then we have 3.6175 * 10 e (46- 16) = 3.6175 * 10e30.
To find the acceleration we use Newton's second law F = ma. F is 3.6175 * 10e30 and M is 7.503 * 10e24 so a = F/M and then we have 3.6175/7.503 * 10e (30-24) = 0.48 * 10e6.
Similarly for moon, we have a = 3.6715/2.703 * 10e(30-22). = 1.358 * 10e8</span>