I think you forgot to mention Susan's current age if not:
x+5
x-4
6x
Answer:
.b. It is one‐half as large as when n = 100.
Step-by-step explanation:
Given that a simple random sample of 100 batteries is selected from a process that produces batteries with a mean lifetime of 32 hours and a standard deviation of 3 hours.
i.e. s = 0.3
we obtain se of sample by dividing std devitation by the square root of sample size
i.e. s= 
when n =100 this = 0.3 and
when n =400 this equals 0.15
We find that when sample size is four times as large as original, std deviation becomes 1/2 of the original
Correction option is
.b. It is one‐half as large as when n = 100.
F(n-1) = f(n) - 5, based off of the first one
Answer:
74°
Step-by-step explanation:
A rhombus is a quadrilateral that has its opposite sides to be parallel to be each other. This means that the two interior opposite angles are equal to each other. Since the sum of the angles of a quadrilateral is 360°.
According to the triangle, since one of the acute angle is 32°, then the acute angle opposite to this angle will also be 32°.
The remaining angle of the rhombus will be calculated as thus;
= 360° - (32°+32°)
= 360° - 64°
= 296°
This means the other two opposite angles will have a sum total of 296°. Individual obtuse angle will be 296°/2 i.e 148°
This means that each obtuse angles of the rhombus will be 148°.
To get the unknown angle m°, we can see that the diagonal cuts the two obtuse angles equally, hence one of the obtuse angles will also be divided equally to get the unknown angle m°.
m° = 148°/2
m° = 74°
Hence the angle measure if m(1) is 74°