Answer:
t = 1.75
t = 0.04
Explanation:
a)
For part 1 we want to use a kenamatic equation with constant acceleration:
X = 1/2*a*t^2
isolate time
t = sqrt(2X / a)
Plugin known variables. Acceleration is the force of gravity which is 9.8 m/s^2
t = sqrt(2*15m / 9.8m/s^2)
t = 1.75 s
b)
The speed of sound travels at a constant speed therefore we don't need acceleration and can use the equation:
v = d / t
isolate time
t = d / v
plug in known variables
t = 15m / 340m/s
t = 0.04 s
X=1/2 at^2
3.1=1/2 a *0.64
a=9.68
v=at
v=0.8*9.6875=7.75
Answer:
Explanation:
Rx = -28.2 units
Ry = 19.6 units
magnitude of R = √ [( - 28.2 )² + ( 19.6 ) ]
= √ ( 795.24 + 384.16 )
= 34.34 units
If θ be the angle measured counterclockwise from the +x-direction
Tanθ = 19.6 / - 28.2 = -0.695
θ = 180 - 34.8
= 145.2° .
Here
- Acceleration and initial velocities are constant.
According to first equation of kinematics.




- Time was t at velocity v
- Time will be 4t at velocity 4v
Answer:
Electric field intensity is the force experienced by a test charge q in a electric field E.