Explanation:
<em>Here </em><em>it </em><em>is </em><em>given </em>
<em>Work </em><em>(</em><em>W) </em><em> </em><em>=</em><em> </em><em>3</em><em>5</em><em>6</em><em>0</em><em> </em><em>J</em>
<em>Time </em><em>(</em><em>t) </em><em> </em><em>=</em><em> </em><em>5</em><em>5</em><em> </em><em>sec</em>
<em>power </em><em>(</em><em>P) </em><em> </em><em>=</em><em> </em><em>?</em>
<em>We </em><em>know </em><em>we </em><em>have </em><em>the </em><em>formula </em>
<em>
</em>
<em>P </em><em>=</em><em> </em><em>3</em><em>5</em><em>6</em><em>0</em><em>/</em><em>5</em><em>5</em>
<em>P </em><em>=</em><em> </em><em>6</em><em>4</em><em>.</em><em>7</em><em>3</em><em> </em><em>watt</em>
Some guidance notes which may help.To calculate the current flow, Ohm's law can be used. This can be written as current=voltage/resistance, or I=V/R. V is 1.5V.R for the copper wire quoted would be calculated as R = resistivity x length/cross sectional area. The area would be calculated from the formula area = pi x diameter squared/4So, R=resistivity x length divided by (pi x diameter squared/4)Until is the resistivity of copper is known, that's about as far as can be gone.Any further questions, please ask.
Answer:
The apparent weight is the weight of the body minus the weight of the liquid displaced. The body will float only when both the weights are same. In this case, the given body of weight W is floating and hence the apparent weight is zero.
Answer:

Explanation: The equations used are as follows:

By using equation (2), the time needed for the car to come to rest is calculated as follows:

By using equation (1), The total distance traveled in that time would be as:

The revolutions taken by the tire before the car comes to rest would be: