Complete Question
The Brown's Ferry incident of 1975 focused national attention on the ever-present danger of fires breaking out in nuclear power plants. The Nuclear Regulatory Commission has estimated that with present technology there will be on average, one fire for every 10 years for a reactor. Suppose that a certain state has two reactors on line in 2020 and they behave independently of one another. Assuming the incident of fires for individual reactors can be described by a Poisson distribution, what is the probability that by 2030 at least two fires will have occurred at these reactors?
Answer:
The value is 
Step-by-step explanation:
From the question we are told that
The rate at which fire breaks out every 10 years is
Generally the probability distribution function for Poisson distribution is mathematically represented as

Here x represent the number of state which is 2 i.e 
Generally the probability that by 2030 at least two fires will have occurred at these reactors is mathematically represented as

=> ![P(x_1 + x_2 \ge 2 ) = 1 - [P(x_1 + x_2 = 0 ) + P( x_1 + x_2 = 1 )]](https://tex.z-dn.net/?f=P%28x_1%20%2B%20x_2%20%5Cge%202%20%29%20%3D%20%201%20-%20%5BP%28x_1%20%2B%20x_2%20%3D%200%20%29%20%2B%20P%28%20x_1%20%2B%20x_2%20%3D%201%20%29%5D)
=> ![P(x_1 + x_2 \ge 2 ) = 1 - [ P(x_1 = 0 , x_2 = 0 ) + P( x_1 = 0 , x_2 = 1 ) + P(x_1 , x_2 = 0)]](https://tex.z-dn.net/?f=P%28x_1%20%2B%20x_2%20%5Cge%202%20%29%20%3D%20%201%20-%20%5B%20P%28x_1%20%20%3D%200%20%2C%20%20x_2%20%3D%200%20%29%20%2B%20P%28%20x_1%20%3D%200%20%2C%20x_2%20%3D%201%20%29%20%2B%20P%28x_1%20%2C%20x_2%20%3D%200%29%5D)
=> 
=> ![P(x_1 + x_2 \ge 2 ) = 1 - \{ [ \frac{1^0}{ 0! } * e^{-1}] * [[ \frac{1^0}{ 0! } * e^{-1}]] )+ ( [ \frac{1^1}{1! } * e^{-1}] * [[ \frac{1^1}{ 1! } * e^{-1}]] ) + ( [ \frac{1^1}{ 1! } * e^{-1}] * [[ \frac{1^0}{ 0! } * e^{-1}]]) \}](https://tex.z-dn.net/?f=P%28x_1%20%2B%20x_2%20%5Cge%202%20%29%20%3D%20%201%20-%20%5C%7B%20%5B%20%5Cfrac%7B1%5E0%7D%7B%200%21%20%7D%20%2A%20e%5E%7B-1%7D%5D%20%2A%20%5B%5B%20%5Cfrac%7B1%5E0%7D%7B%200%21%20%7D%20%2A%20e%5E%7B-1%7D%5D%5D%20%29%2B%20%28%20%5B%20%5Cfrac%7B1%5E1%7D%7B1%21%20%7D%20%2A%20e%5E%7B-1%7D%5D%20%2A%20%5B%5B%20%5Cfrac%7B1%5E1%7D%7B%201%21%20%7D%20%2A%20e%5E%7B-1%7D%5D%5D%20%29%20%2B%20%28%20%5B%20%5Cfrac%7B1%5E1%7D%7B%201%21%20%7D%20%2A%20e%5E%7B-1%7D%5D%20%2A%20%5B%5B%20%5Cfrac%7B1%5E0%7D%7B%200%21%20%7D%20%2A%20e%5E%7B-1%7D%5D%5D%29%20%5C%7D)
=> ![P(x_1 + x_2 \ge 2 )= 1- [[0.3678 * 0.3679] + [0.3678 * 0.3679] + [0.3678 * 0.3679] ]](https://tex.z-dn.net/?f=P%28x_1%20%2B%20x_2%20%5Cge%202%20%29%3D%201-%20%5B%5B0.3678%20%20%2A%200.3679%5D%20%2B%20%5B0.3678%20%20%2A%200.3679%5D%20%2B%20%5B0.3678%20%20%2A%200.3679%5D%20%20%5D)

Answer:
If
then
and 
a | b | a + b (answer)
0 | 0 | 0
0 | 1 | 1
0 | 2 | 2
1 | 0 | 1
2 | 0 | 2
1 | 1 | 2
2 | 1 | 3
Step-by-step explanation:
Considering the following conditions for the real numbers:

Following the rules of these in-equations, it is possible to deduce:

Then, if the proposed statement is:

The conditions above shall comply the requirements established, but first, analyzing the statement:
If
and
then
,
and
.
If
and b a non negative real number, then
, but because to
, then
. Due to the commutative property of sums, the same behavior will be presented if
and a a non negative real number.
According to that, if
, then
and
.
Firstly, let's take first factor:
(y^3)^2 = y^(3*2) = y^6
and then:
y^6 * y^7 = y^(6 + 7) = y^13
Answer:
B Survey a random sample of eighth-grade students
Step-by-step explanation:
In order to reach the best conclusion without biased data, the best sampling method would be B because not only does it survey 8th graders, but it also surveys a random group, ensuring that not all of the students are potentially excelling in and/or having trouble with homework.
It should be 0 because the only factor changing is the x value