Answer:
N2H2(aq) + 2OH^-(aq) ----------> N2(g) + 2H2O(l) + 2e
Explanation:
Hydrazine is mostly used in thermal engineering as an anticorrosive agent. Hydrazine can be oxidized in aqueous solution as shown in the equation above. Oxidation has to do with loss of electrons and increase in oxidation number.
The oxidation number of nitrogen in the equation increased from -1 in hydrazine on the lefthand side of the reaction equation to zero in nitrogen on the right hand side of the reaction equation. Two electrons were lost in the process as shown.
Answer:
Polar covalent bond.
Explanation:
When the bond is formed between the atoms by sharing the electrons the bond thus have covalent character. The atom with larger electronegativity attract the electron pair more towards it self and becomes partial negative while the other atom becomes partial positive. When the electronegativity difference is less than 0.4 the bond is non polar covalent.
When bonded atoms have greater electronegativity difference i.e 2 or greater than two the bond is ionic because electron is transfer from low electronegative atom to highest electronegative atom.
For example:
In water the electronegativity of oxygen is 3.44 and hydrogen is 2.2. That's why electron pair attracted more towards oxygen, thus oxygen becomes partial negative and hydrogen becomes partial positive.
In case of H₂, Cl₂, Br₂ the bond has very high covalent character because of zero electronegativity difference.
Spontaneous = exothermic. If it is not spontaneous, it is endothermic. ΔG > 0, which means that the reaction uses energy instead of emitting it.
Answer:
The gas and food are examples of energy.
Explanation:
The reason why is that food is energy as proteins and electrolytes. Gas is a energy of fossil fuels.
Answer: The final temperature in Kelvin is 1488
Explanation:
To calculate the final temperature of the system, we use the equation given by Gay-Lussac Law. This law states that pressure of the gas is directly proportional to the temperature of the gas at constant pressure.
Mathematically,

where,
are the initial pressure and temperature of the gas.
are the final pressure and temperature of the gas.
We are given:

Putting values in above equation, we get:

Hence, the final temperature in Kelvin is 1488