Answer:
1/64
Step-by-step explanation:
Given the expression
3+4√4y = 4
4√4y = 4-3
4√4y = 1
√4y = 1/4
Square both sides
(√4y)²= (1/4)²
4y = 1/16
y = 1/16 * 1/4
y = 1/64
Hence the value of y is 1/64
Answer:
The expanded form for 14.702 is
fourteen and seven hundred two thousandths
Answer:
8:3 is the ratio of kids to adults
32 kids, so there are 12 adults
Ur perpendicular line will have -1 as the slope
y - y1 = m(x - x1)
slope(m) = -1
(2,5)...x1 = 2 and y1 = 5
now sub
y - 5 = -1(x - 2) can be written like : y - 5 = -(x - 2)
The change in the water vapors is modeled by the polynomial function c(x). In order to find the x-intercepts of a polynomial we set it equal to zero and solve for the values of x. The resulting values of x are the x-intercepts of the polynomial.
Once we have the x-intercepts we know the points where the graph crosses the x-axes. From the degree of the polynomial we can visualize the end behavior of the graph and using the values of maxima and minima a rough sketch can be plotted.
Let the polynomial function be c(x) = x
² -7x + 10
To find the x-intercepts we set the polynomial equal to zero and solve for x as shown below:
x
² -7x + 10 = 0
Factorizing the middle term, we get:
x
² - 2x - 5x + 10 = 0
x(x - 2) - 5(x - 2) =0
(x - 2)(x - 5)=0
x - 2 = 0 ⇒ x=2
x - 5 = 0 ⇒ x=5
Thus the x-intercept of our polynomial are 2 and 5. Since the polynomial is of degree 2 and has positive leading coefficient, its shape will be a parabola opening in upward direction. The graph will have a minimum point but no maximum if the domain is not specified. The minimum points occurs at the midpoint of the two x-intercepts. So the minimum point will occur at x=3.5. Using x=3.5 the value of the minimum point can be found. Using all this data a rough sketch of the polynomial can be constructed. The figure attached below shows the graph of our polynomial.