Answer:
a. Wavelength = λ = 20 cm
b. Next distance of maximum intensity will be 40 cm
Explanation:
a. The distance between the two speakers is 20cm. SInce the intensity is maximum which refers that we have constructive interference and the phase difference must be an even multiple of π and equivalent path difference is nλ.
Now when distance increases upto 30 cm between the speakers, the sound intensity becomes zero which means that there is destructive interference and equivalent path is now increased from nλ to nλ + λ/2.
This we get the equation:
(nλ + λ/2) - nλ = 30-20
λ/2 = 10
λ = 20 cm
b. at what distance, sound intensity will be maximum again.
For next point calculation for maximum sound intensity, the path difference must be increased (n+1) λ. The distance must increase by λ/2 from the point of zero intensity.
= 30 + λ/2
= 30 + 20/2
=30+10
=40 cm
Answer:
It conserves both energy and momentum in the collision at the same time. By design, when the balls collide the strings that hold them up are vertical (assuming balls are only swung from one side).
Explanation:
Hope This Helps!!
Answer:
Ozone layer in the upper atmosphere filters most of the harmful radiations of shorter wavelength. It actually absorbs the hazardous radiations like ultraviolet, gamma rays, x- rays and most of all those having shorter wavelength then the visible light. That's how the earth's atmosphere protects life on earth. But unfortunately, climate change and global warming is causing the depletion of ozone layer which is causing skin related diseases and harming not only the human life but also the plants and animals.
Answer:
a) 6.4 kJ
b) 43.4 kJ
Explanation:
a)
= Heat absorbed = 37 kJ
= Coefficient of performance = 5.8
= Work done
Heat absorbed is given as
=
37 = (5.8)
= 6.4 kJ
b)
= work per cycle required
=
+
= 37 + 6.4
= 43.4 kJ
If you're listening to a sound that has a steady pitch, and suddenly the
pitch goes up, then you know that two things could have happened:
EITHER ...
-- The person or other source making the sound could have
raised the pitch of the sound being produced.
OR ...
-- The person or other source making the sound could have
started moving toward you.
OR ...
-- both.
Even if the pitch of the sound leaving the source doesn't change,
you would still hear it increase if the source starts moving toward
you. That's the so-called "Doppler effect".