Answer:
42000N
Explanation:
First you calculate how much it would contract, and secondly you then calculate the force to stretch it by that amount.
1) linear thermal expansion coef brass 19e-6 /K
∆L = αL∆T = (19e-6)(1.85)(110) = 0.00387 meter or 3.87 mm
Second part involves linear elasticity.
for brass, young's modulus is 15e6 psi or 100 GPa
cross-sectional area of rod is π(0.008)² = 0.0002 m²
F = EA∆L/L
F = (100e9)(0.0002)(0.00387) / (1.85)
F = 42000 or 42 kN
<h2>
Answer: Decreasing the distance between Hox and Blox, increasing the mass of Hox, or increasing the mass of Hox and Blox.
</h2>
Explanation:
According to the law of universal gravitation:
Where:
is the module of the attraction force exerted between both planets
is the universal gravitation constant.
and
are the masses of both planets.
is the distance between both planets.
As we can see, the gravity force is directly proportional to the mass of the bodies and inversely proportional to the square of the distance that separates them.
In other words:
If we decrease the distance between both planets (Hox and Blox), the gravitational pull between them will increase.
On the other hand, if we keep the distance between Hox and Blox, but we increase the mass of one of them, or increase the mass of both, the gravitational pull between them will also increase.
Ithoshpere is space sheeld. asthenosphere next sheets of sky
To see what causes a change in experiment. If they kept everything the same what would be the point of experiment? One thing has to be different to test and get a result ! They have to see how that one variable changes the experiment. If they change so many things then the experiment will be messed up. They have to focus on that one variable during experiment to get the proper result. Hope this helps you. Think about it if you want to know how antibiotic effects bodies. You choose two people and you give antibiotic to one. And you don't give any other drug to the people you are testing. Because you truly want to know the effect of antibiotic alone.