The ratio for population density is population:area
Using this, we find that choices 1, 4, and 5 are true,
:)
Answer:
$1.44
Step-by-step explanation:
<u>Store A:</u>
12 bottles of water for $3.36
Then
48 bottles of water for
(48 bottles is 4 times greater than 12 bottles)
<u>Store B:</u>
24 bottles of water for $6.00
Then
48 bottles of water for
(48 bottles is twice greater than 24 bottles)
<u>Difference:</u>

Answer:
p ∈ IR - {6}
Step-by-step explanation:
The set of all linear combination of two vectors ''u'' and ''v'' that belong to R2
is all R2 ⇔
And also u and v must be linearly independent.
In order to achieve the final condition, we can make a matrix that belongs to
using the vectors ''u'' and ''v'' to form its columns, and next calculate the determinant. Finally, we will need that this determinant must be different to zero.
Let's make the matrix :
![A=\left[\begin{array}{cc}3&1&p&2\end{array}\right]](https://tex.z-dn.net/?f=A%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D3%261%26p%262%5Cend%7Barray%7D%5Cright%5D)
We used the first vector ''u'' as the first column of the matrix A
We used the second vector ''v'' as the second column of the matrix A
The determinant of the matrix ''A'' is

We need this determinant to be different to zero


The only restriction in order to the set of all linear combination of ''u'' and ''v'' to be R2 is that 
We can write : p ∈ IR - {6}
Notice that is
⇒


If we write
, the vectors ''u'' and ''v'' wouldn't be linearly independent and therefore the set of all linear combination of ''u'' and ''b'' wouldn't be R2.
Answer: To find the area of a rectangle, multiply its height by its width. For a square you only need to find the length of one of the sides (as each side is the same length) and then multiply this by itself to find the area.
Answer:
The slope is 3/4 and on a graph it would be 4 over to the right and 3 down.