1.194 mol
(remember to use sig figs!)
Answer:
The molar mass of the liquid 62.89 g/mol
Explanation:
Step 1: Data given
Mass of the sample = 0.1 grams
Temperature = 70°C
Volume = 750 mL
Pressure = 0.05951 atm
Step 2: Calculate the number of moles
p*V = n*R*T
n = (p*V)/(R*T)
⇒ with n = the number of moles gas = TO BE DETERMINED
⇒ with p = The pressure = 0.05951 atm
⇒ with V = The volume of the flask = 750 mL = 0.750 L
⇒ with R = The gasconstant = 0.08206 L*atm/K*mol
⇒with T = the temperature = 70 °C = 343 Kelvin
n = (0.05951 *0.750)/(0.08206*343)
n = 0.00159 moles
Step 3: Calculate molar mass
Molar mass = mass / moles
Molar mass =0.1 gram / 0.00159 moles
Molar mass = 62.89 g/mol
The molar mass of the liquid 62.89 g/mol
Frequency = speed of light/ wavelength of photon. wavelength = speed of light/frequency = 3 x 10^8 / 2.43 x 10^8= 1.23m
<span>B. electron = negative; proton = positive; neutron = no charge </span>
Answer:
Released
Explanation:
When particles that attract each other come together, energy is usually released. The combination of the two particles is expected to result in a lower energy system. This lower energy system will be more stable than the different individual particles.
Hence, as this lower energy system is formed, the excess energy originally possessed by the particles is evolved hence energy is released when particles that attract each other are allowed to come together.