Answer: The oxidation state of a free element (uncombined element) is zero. For a simple (monoatomic) ion, the oxidation state is equal to the net charge on the ion. For example, Cl– has an oxidation state of -1. When present in most compounds, hydrogen has an oxidation state of +1 and oxygen an oxidation state of −2.
hope this helps........ Stay safe and have a Merry Christmas!!!!!!!!! :D Explanation:
<span>Answer is: Van't Hoff factor
(i) for this solution is 1.051 .
Change in boiling point from pure solvent to solution: ΔT
=i · Kb · b.
Kb - </span><span>molal boiling point elevation constant</span><span> is 0.512°C/m.
b - molality, moles of solute per kilogram of solvent.
b = 1.26 m.
ΔT = 101.63°C - 100</span>°C = 1.63°C.
i = 1.63°C ÷ (0.512°C/m · 1.26 m).
i = 1.051.
Description of a nerve signal
The nerve signal, or action potential, is a coordinated movement of sodium and potassium ions across the nerve cell membrane. Here's how it works: As we discussed, the inside of the cell is slightly negatively charged (resting membrane potential of -70 to -80 mV).
Answer:
The ionization equation is
⇄
(1)
Explanation:
The ionization equation is
⇄
(1)
As the Bronsted definition sais, an acid is a substance with the ability to give protons thus, H2PO4 is the acid and HPO42- is the conjugate base.
The Ka expression is the ratio between the concentration of products and reactants of the equilibrium reaction so,
![Ka = \frac{[HPO_{4}^{-2}] [H_{3}O^{+}]}{[H_{2}PO_{4}^{-}] [H_{2}O]} = 6.2x10^{-8}](https://tex.z-dn.net/?f=Ka%20%3D%20%5Cfrac%7B%5BHPO_%7B4%7D%5E%7B-2%7D%5D%20%5BH_%7B3%7DO%5E%7B%2B%7D%5D%7D%7B%5BH_%7B2%7DPO_%7B4%7D%5E%7B-%7D%5D%20%5BH_%7B2%7DO%5D%7D%20%3D%206.2x10%5E%7B-8%7D)
The pKa is

The pKa of H2CO3 is 6,35, thus this a stronger acid than H2PO4. The higher the pKa of an acid greater the capacity to donate protons.
In the body H2CO3 is a more optimal buffer for regulating pH due to the combination of the two acid-base equilibriums and the two pKa.
If the urine is acidified, according to Le Chatlier's Principle the equilibrium (1) moves to the left neutralizing the excess proton concentration.
The answer is 0.25 moles because one mole of NH3 would have apporximately 6.02X10^23 molecules