Answer:
High activation energy is the reason behind unsuccessful reaction.
Explanation:
There are two types of reaction: (1) thermodynamically controlled reaction and (2) kinetically controlled reaction.
Thermodynamically controlled reaction are associated with change in enthalpy during reaction. More negative the enthalpy change, more favored will be the reaction.
Kinetically controlled reaction are associated with activation energy of a reaction. The lower the activation energy value, the more rapid will be the reaction.
Here, reaction between
and
is thermodynamically favored due to negative enthalpy change but the high activation energy does not allow the reaction to take place by simple mixing.
The answer for the following problem is mentioned below.
Explanation:
Given:
mass of iron (m) = 15.75 grams
heat (q) = 1097 J
initial temperature (
) = 25°C
final temperature (
) = 177°C
To find:
specific heat (c)
We know;
c = q ÷ mΔT
where;
c represents the specific heat
q represents the heat
m represents the mass
t represents the temperature
c = 
c = 0.45 J/kg°C
<u><em>Therefore the specific heat capacity of iron is 0.45 J/kg°C.</em></u>
Answer:
A.
Explanation:
I chose this because it seems more reasonable . Because its in the air so im guess that its gravitational bc to stay on top of a hill you need balance . Im sorry if its wrong k . I tried .
Answer: during a chemical reaction, matter cannot be created or destroyed
Explanation:
Answer:
thermal radiation
Explanation:
Outgoing Long-wave Radiation (OLR) is electromagnetic radiation of wavelengths from 3–100 μm emitted from Earth and its atmosphere out to space in the form of thermal radiation. It is also referred to as up-welling long-wave radiation and terrestrial long-wave flux, among others.