Answer:
Step-by-step explanation:
Since the length of time taken on the SAT for a group of students is normally distributed, we would apply the formula for normal distribution which is expressed as
z = (x - u)/s
Where
x = length of time
u = mean time
s = standard deviation
From the information given,
u = 2.5 hours
s = 0.25 hours
We want to find the probability that the sample mean is between two hours and three hours.. It is expressed as
P(2 lesser than or equal to x lesser than or equal to 3)
For x = 2,
z = (2 - 2.5)/0.25 = - 2
Looking at the normal distribution table, the probability corresponding to the z score is 0.02275
For x = 3,
z = (3 - 2.5)/0.25 = 2
Looking at the normal distribution table, the probability corresponding to the z score is 0.97725
P(2 lesser than or equal to x lesser than or equal to 3)
= 0.97725 - 0.02275 = 0.9545
1q+2=-6q+3+8q+4
1q+2=2q+7
<span>-2q -2q
</span>-q+2=7
<span> -2 -2
</span>-q=<span>5
-1 -1
q=-5
</span>
It is answer b!!! hope this helps
Its the second one: 5n-3=12